
Introduction to the foundations of
mathematics, using the Lestrade Type

Inspector

Randall Holmes

10/31/2017 10:30 am: Systematic introduction of terms with
bound variables.

Contents

1 Initial examples. Conjunction, implication, and their rules. 3

2 The Curry Howard isomorphism: defining type constructors
analogous to propositional connectives 15

3 A brief discussion of the metaphysics of Lestrade 22

4 The care and feeding of declarations: the system of possible
worlds or “moves” 23
4.1 Namespace management refined: saving and retrieving envi-

ronments . 27

5 A proof as an example A ∧B → B ∧ A. 28

6 The Lestrade user input language 30

7 We begin considering ontology: equality primitives intro-
duced. The biconditional as equality on propositions. Iden-
tification of proofs of the same proposition. 31
7.1 Equality and type constructions 41

8 Natural numbers introduced 43

1

9 The universal quantifier. Principle of mathematical induc-
tion. 59

10 Definitions and basic axioms for addition and multiplication 64

11 Addition is commutative 68

12 Power set types introduced 81

13 Naive set theory and Russell’s paradox (without even using
negation!) 87

14 Constructive forms of negation, disjunction, and the existen-
tial quantifier 96

15 Classical logic completed with double negation. Proofs of
some classical theorems. 102

16 Basic declarations for a version of Quine’s New Foundations118

17 The third and fourth Peano axioms 124

18 A note on polymorphic typing 125

19 Introduction to Lestrade 133
19.1 Introduction . 133
19.2 Metaphysics of Lestrade . 135
19.3 The Lestrade Environment: a metaphor for mathematical ac-

tivity . 137
19.3.1 Namespace management refined: saving and retrieving

environments . 142
19.4 Lestrade Notation . 143
19.5 Lestrade Sort Checking and Definition Expansion 145

2

The purpose of this document is to introduce a reader to the foundations
of logic and mathematics using the Lestrade Type Inspector, a piece of soft-
ware designed to allow the specification of mathematical objects in a very
general way. It could also be used as an introduction to the software for
someone familiar with the foundational subject matter.

Lestrade implements a particular very general framework for the imple-
mentation of mathematical objects, statements, and proofs of statements.
Part of the underpinning of the approach is that in this framework the state-
ments and their proofs are viewed as particular kinds of mathematical object
themselves.

The actual implementation of foundational concepts of logic and math-
ematics here is not dictated by Lestrade: there is considerable latitude for
different design decisions in the implementation of logic and mathematics in
the framework. We may sometimes indicate alternative approaches.

1 Initial examples. Conjunction, implication,

and their rules.

We begin with the implementation of the very simple concepts of logical con-
junction, the use of the word “and” to link sentences, and logical implication,
the use of “if. . .then. . .” to link sentences.

Lestrade execution:

declare A prop

>> A: prop {move 1}

declare B prop

>> B: prop {move 1}

3

Here is a bit of initial dialogue with Lestrade. Here we use the declare

command to introduce two variables, A and B, of type prop, the type in-
habited by mathematical statements.

Lines starting with Lestrade command names such as declare, postulate,
define are entered by the user. Lines starting with >> are Lestrade responses
to commands typed by the user.

Lestrade execution:

postulate & A B : prop

>> &: [(A_1:prop),(B_1:prop) => (---:prop)]

>> {move 0}

postulate -> A B : prop

>> ->: [(A_1:prop),(B_1:prop) => (---:prop)]

>> {move 0}

Here we declare the operations of conjunction and implication. At the
moment, they look just the same: the only thing Lestrade knows about
them so far is that they are operations taking two proposition inputs to a
proposition output. Details of the input and output of Lestrade itself (the
things the user enters and the replies that Lestrade produces) will be analyzed
more carefully as we go forward.

Lestrade execution:

define proptest A B : (A & B) -> A

>> proptest: [(A_1:prop),(B_1:prop) => (((A_1

>> & B_1) -> A_1):prop)]

4

>> {move 0}

We illustrate another Lestrade command, using define to introduce a de-
fined operation. The main point here is to notice that Lestrade supports infix
use of the conjunction and implication operators, though the Lestrade dec-
laration commands requires their use in prefix position when they are newly
declared. The Lestrade user should get used to typing lots of parentheses,
though she does not need to use as many as are displayed in the output: she
does need to be aware that in general terms all infix (or mixfix) operations
have the same precedence and group to the right if explicit parentheses are
not provided, and unary operations bind more tightly than binary or infix
operations.

Lestrade execution:

open

declare A1 prop

>> A1: prop {move 2}

declare B1 prop

>> B1: prop {move 2}

define proptest2 A1 B1 : (A1 & B1) -> \

A1

>> proptest2: [(A1_1:prop),(B1_1:prop) =>

>> (---:prop)]

>> {move 1}

5

close

Here we do something subtle in the Lestrade declaration environment
which we don’t explain fully for now: the open. . .close environment creates
a separate little Lestrade context. The alternative version proptest2 of our
defined notion will behave a little differently as we see at once.

Lestrade execution:

declare C prop

>> C: prop {move 1}

declare D prop

>> D: prop {move 1}

define zorch C D: proptest C & D, D -> C

>> zorch: [(C_1:prop),(D_1:prop) => (((C_1 &

>> D_1) proptest (D_1 -> C_1)):prop)]

>> {move 0}

define zorch2 C D: proptest2 C & D, D -> \

C

>> zorch2: [(C_1:prop),(D_1:prop) => ((((C_1

6

>> & D_1) & (D_1 -> C_1)) -> (C_1 & D_1)):

>> prop)]

>> {move 0}

Here we use proptest and proptest2 to define new operations zorch

and zorch2. The interesting thing which happens is that the operation
proptest2 which was defined in its own little local context gets expanded
when it is used, while proptest (which “means” the same thing) is left
unexpanded. Expansion of definitions is the main kind of “calculation” that
Lestrade does, though we may detect it doing more complex things as we go
forward.

Now we will return to our main line of development, introducing the
machinery of proof in Lestrade.

Lestrade execution:

declare aa that A

>> aa: that A {move 1}

declare bb that B

>> bb: that B {move 1}

We declare new variables aa and bb. The sorts of these variables require
special explanation. With each proposition p of sort prop, we associate a
new sort that p inhabited by proofs of p, or, perhaps better, evidence that
p is true.

Lestrade execution:

7

postulate Andproof0 A B aa bb:that A & B

>> Andproof0: [(A_1:prop),(B_1:prop),(aa_1:that

>> A_1),(bb_1:that B_1) => (---:that (A_1

>> & B_1))]

>> {move 0}

postulate Andproof aa bb:that A & B

>> Andproof: [(.A_1:prop),(aa_1:that .A_1),(.B_1:

>> prop),(bb_1:that .B_1) => (---:that (.A_1

>> & .B_1))]

>> {move 0}

define Selfand aa : Andproof aa aa

>> Selfand: [(.A_1:prop),(aa_1:that .A_1) =>

>> ((aa_1 Andproof aa_1):that (.A_1 & .A_1))]

>> {move 0}

And now we introduce a rule of proof: if we have evidence that A and
evidence that B, we can conclude A∧B: to conclude A∧B is equivalent to
postulateing or defining an object of sort that A & B. The symbol ∧ is the
standard representation of “and” in formal logic; Lestrade uses & because of
the limitations of the typewriter keyboard.

The fully verbose version Andproof0 takes the arguments A, B, aa and
bb, and the Lestrade framework requires these arguments officially. Notice
though that from the arguments aa and bb we can deduce what A and
B have to be: the second version Andproof uses the “implicit argument
inference” feature of Lestrade to allow the user to enter just the names of the

8

proofs, deducing the names of the propositions proved. The declaration that
Lestrade gives as a response makes it clear that it knows about the hidden
arguments.

Selfand is a defined operation on proofs: from a proof of A it generates
a proof of A∧A. We might think that this is a proof of “If A then A∧A, or
A→ (A∧A): the fact that we might think this is a hint as to how Lestrade
represents proofs of implications. In fact, Selfand is a rule of inference, not
a proof of a conditional, but it can be used to prove the conditional as we
will see below.

Lestrade execution:

declare xx that A & B

>> xx: that (A & B) {move 1}

postulate Simplification1 xx : that A

>> Simplification1: [(.A_1:prop),(.B_1:prop),

>> (xx_1:that (.A_1 & .B_1)) => (---:that

>> .A_1)]

>> {move 0}

postulate Simplification2 xx : that B

>> Simplification2: [(.A_1:prop),(.B_1:prop),

>> (xx_1:that (.A_1 & .B_1)) => (---:that

>> .B_1)]

>> {move 0}

For completeness, we introduce the other two (quite obvious) rules of

9

conjunction: from evidence xx for A∧B, we can extract evidence for A and
evidence for B. We introduce them in forms which hide implicit arguments.

Lestrade execution:

declare cc that A->B

>> cc: that (A -> B) {move 1}

postulate Mp aa cc: that B

>> Mp: [(.A_1:prop),(aa_1:that .A_1),(.B_1:prop),

>> (cc_1:that (.A_1 -> .B_1)) => (---:that

>> .B_1)]

>> {move 0}

This snippet of code embodies the traditional rule of modus ponens: given
evidence for A and evidence for A → B, we have evidence for B. We have
only given the version with implicit arguments. It is interesting to note that
the order of the arguments of Mp is probably not what we would choose
if we were writing all the arguments explicitly: but it works. In general
terms, Lestrade places deduced implicit arguments as late as possible in the
argument list.

open

declare aaa that A

>> aaa: that A {move 2}

postulate ded aaa that B

10

>> ded: [(aaa_1:that A) => (---:that B)]

>> {move 1}

close

postulate Deduction ded : that A -> B

>> Deduction: [(.A_1:prop),(.B_1:prop),(ded_1:

>> [(aaa_2:that .A_1) => (---:that .B_1)])

>> => (---:that (.A_1 -> .B_1))]

>> {move 0}

Above is the old style implementation of the proof of the deduction the-
orem without variable binding terms.

Lestrade execution:

declare aaa1 that A

>> aaa1: that A {move 1}

declare ded [aaa1 => that B] \

>> ded: [(aaa1_1:that A) => (---:that B)]

>> {move 1}

postulate Deduction ded : that A -> B

11

>> Deduction: [(.A_1:prop),(.B_1:prop),(ded_1:

>> [(aaa1_2:that .A_1) => (---:that .B_1)])

>> => (---:that (.A_1 -> .B_1))]

>> {move 0}

This piece of code implements a standard strategy for proving implica-
tions, in the more compact style which variable binding terms allow (it is not
necessary to open a new move to declare ded as in the code given above): if
assuming A allows us to deduce B, we can conclude A→ B. What is quite
tricky is how Lestrade represents this. We open a little environment in which
we postulate the function ded which takes evidence aaa for A to evidence
for B: we close this environment, and the symbol ded remains as a variable
representing a function of this type. We are then able to postulate a function
which takes any such function to evidence for A→ B. We will in due course
have a careful discussion of Lestrade environments. For the moment, we will
content ourselves with giving an example of how this is used.

A side remark to those in the know: it is important to notice that a
proof of an implication is not identified with a function from proofs of its
antecedent to proofs of its consequent, but obtained from such a function
by applying a constructor casting from a function sort to an object sort (see
the next section on metaphysics of Lestrade for a discussion of object vs.
function sorts).

open

declare aaa that A

>> aaa: that A {move 2}

define selfand aaa : Andproof aaa aaa

>> selfand: [(aaa_1:that A) => ((aaa_1

>> Andproof aaa_1):that (A & A))]

>> {move 1}

12

close

define Selfand2 A : Deduction selfand

>> Selfand2: [(A_1:prop) => (Deduction([(aaa_2:

>> that A_1) => ((aaa_2 Andproof aaa_2):

>> that (A_1 & A_1))])

>> :that (A_1 -> (A_1 & A_1)))]

>> {move 0}

A proof given in the old style, discussed below.

Lestrade execution:

define Selfand2 A : Deduction [aaa1 => Andproof \

aaa1 aaa1] \

>> Selfand2: [(A_1:prop) => (Deduction([(aaa1_2:

>> that A_1) => ((aaa1_2 Andproof aaa1_2):

>> that (A_1 & A_1))])

>> :that (A_1 -> (A_1 & A_1)))]

>> {move 0}

Here we actually prove the theorem A→ (A ∧A) for any proposition A,
in a very compact form allowed by use of the term [aaa1 => Andproof aaa1

aaa1] for the function declared as selfand in the open/close block in the
original proof. It is interesting to observe that this is actually a function of
the proposition A rather than of a proof of A: whether A itself is true or not,
this theorem is true, and the definition of the function Selfand2 encapsulates

13

reasoning justifying this: from a proposition A, we can postulate evidence
for the proposition A ∧ A.

An interesting feature of the Lestrade output is that it contains a math-
ematical expression

[(A1 : prop) => (Deduction([(aaa2 : that A1) => ((aaa2 Andproof aaa2) : that(A1&A1))])

standing for the proof as a mathematical object. Lestrade allows itself
output notation significantly more complex that the user input notation, but
with experience we will be able to read this.

14

2 The Curry Howard isomorphism: defining

type constructors analogous to propositional

connectives

We recapitulate the basic declarations for the propositional connectives of
conjunction and implication, and in parallel implement the type constructors
which build Cartesian products and function spaces, along with the basic
operations on the complex types. The analogy between the propositional
constructions on the one hand and the type constructions on the other is
known as the Curry-Howard isomorphism.

declare A prop

>> A: prop {move 1}

declare B prop

>> B: prop {move 1}

postulate & A B : prop

>> &: [(A_1:prop),(B_1:prop) => (---:prop)]

>> {move 0}

postulate -> A B : prop

>> ->: [(A_1:prop),(B_1:prop) => (---:prop)]

>> {move 0}

We declare the Cartesian product and function space constructors.

Lestrade execution:

15

declare At type

>> At: type {move 1}

declare Bt type

>> Bt: type {move 1}

postulate X At Bt : type

>> X: [(At_1:type),(Bt_1:type) => (---:type)]

>> {move 0}

postulate ->> At Bt : type

>> ->>: [(At_1:type),(Bt_1:type) => (---:type)]

>> {move 0}

declare aa that A

>> aa: that A {move 1}

declare bb that B

>> bb: that B {move 1}

postulate Andproof aa bb:that A & B

16

>> Andproof: [(.A_1:prop),(aa_1:that .A_1),(.B_1:

>> prop),(bb_1:that .B_1) => (---:that

>> (.A_1 & .B_1))]

>> {move 0}

declare xx that A & B

>> xx: that (A & B) {move 1}

postulate Simplification1 xx : that A

>> Simplification1: [(.A_1:prop),(.B_1:prop),

>> (xx_1:that (.A_1 & .B_1)) => (---:that

>> .A_1)]

>> {move 0}

postulate Simplification2 xx : that B

>> Simplification2: [(.A_1:prop),(.B_1:prop),

>> (xx_1:that (.A_1 & .B_1)) => (---:that

>> .B_1)]

>> {move 0}

We introduce the pair operation and projection functions, which we see
are formally analogous to the logical rules of conjunction and simplification.

Lestrade execution:

declare aat in At

>> aat: in At {move 1}

17

declare bbt in Bt

>> bbt: in Bt {move 1}

postulate Pair aat bbt in At X Bt

>> Pair: [(.At_1:type),(aat_1:in .At_1),(.Bt_1:

>> type),(bbt_1:in .Bt_1) => (---:in (.At_1

>> X .Bt_1))]

>> {move 0}

declare xxt in At X Bt

>> xxt: in (At X Bt) {move 1}

postulate proj1 xxt in At

>> proj1: [(.At_1:type),(.Bt_1:type),(xxt_1:

>> in (.At_1 X .Bt_1)) => (---:in .At_1)]

>> {move 0}

postulate proj2 xxt in Bt

>> proj2: [(.At_1:type),(.Bt_1:type),(xxt_1:

>> in (.At_1 X .Bt_1)) => (---:in .Bt_1)]

>> {move 0}

18

declare cc that A->B

>> cc: that (A -> B) {move 1}

postulate Mp aa cc: that B

>> Mp: [(.A_1:prop),(aa_1:that .A_1),(.B_1:prop),

>> (cc_1:that (.A_1 -> .B_1)) => (---:that

>> .B_1)]

>> {move 0}

open

declare aaa that A

>> aaa: that A {move 2}

postulate ded aaa that B

>> ded: [(aaa_1:that A) => (---:that B)]

>> {move 1}

close

postulate Deduction ded : that A -> B

>> Deduction: [(.A_1:prop),(.B_1:prop),(ded_1:

>> [(aaa_2:that .A_1) => (---:that .B_1)])

>> => (---:that (.A_1 -> .B_1))]

>> {move 0}

We introduce function application and the formation of function objects
from functions (lambda abstraction), which we see are formally analogous
to modus ponens and the deduction theorem. The arguments of function

19

application are supplied in converse order to those of modus ponens (not
because there is any virtue to this but because existing text below written
earlier would have had to be extensively revised to reverse the order of the
arguments of Mp)!)

Lestrade execution:

declare cct in At ->> Bt

>> cct: in (At ->> Bt) {move 1}

declare aat2 in At

>> aat2: in At {move 1}

postulate Apply cct aat2 in Bt

>> Apply: [(.At_1:type),(.Bt_1:type),(cct_1:

>> in (.At_1 ->> .Bt_1)),(aat2_1:in .At_1)

>> => (---:in .Bt_1)]

>> {move 0}

declare dedt [aat2 => in Bt] \

>> dedt: [(aat2_1:in At) => (---:in Bt)]

>> {move 1}

20

postulate Lambda dedt in At ->> Bt

>> Lambda: [(.At_1:type),(.Bt_1:type),(dedt_1:

>> [(aat2_2:in .At_1) => (---:in .Bt_1)])

>> => (---:in (.At_1 ->> .Bt_1))]

>> {move 0}

In the section on equality, we will introduce more primitives for the case
of types, which would have analogues for propositions if we were working in
a constructive logic and wanted to carry out formal operations on proofs.

21

3 A brief discussion of the metaphysics of

Lestrade

Probably we should explain ourselves a bit more.
The most general word used for things we talk about in Lestrade is entity .

Entities are further partitioned into objects and functions.
Entities have sorts: the sort indicates what kind of thing we are talking

about.
The sorts of object can be reviewed quickly:

1. prop is the sort of propositions, i.e., mathematical statements.

2. For each proposition p, we provide a sort that p inhabited by evidence
that p is true. A proof of p is such evidence, and explicitly constructed
objects of sort that p will be referred to as “proofs of p”; but to suppose
that p is true (to postulate an object of the sort that p) is not the
same thing as to suppose that p has actually been proved or even can
be proved.1

3. obj is a sort inhabited by untyped mathematical objects.

4. type is a sort inhabited by “type labels”. An example of an object of
sort type would be the label Nat for the sort “natural number”.

5. For each τ of sort type we provide a sort in τ inhabited by objects of
type τ . If n is a natural number, it might be construed as of sort in

Nat. Something of sort in τ may more briefly be said to be of type τ .

If the reader notices an analogy between prop/that and type/in, she is
perceptive.

Functions are more complicated and their sorts are more complicated. A
Lestrade function takes a list of arguments of a fixed length, each item of
which is of a sort possibly determined by earlier arguments in the list, and
yields output of a sort which may depend on its arguments. A lot of the logi-
cal power of this framework comes from the fact that the sort of an argument
of a function may depend on the values of earlier arguments, and the sort of
the output may depend on the values of the inputs. One mechanism which

1A constructivist might presume that to suppose that X is true is the same thing as
to suppose that X has been proved, but we do not presume a constructivist view here.

22

makes such dependencies possible is the fact that the object sorts of the form
that p and in τ may contain quite complex expressions abbreviated here by
p, τ ; we have already seen this in Lestrade output above; function sorts also
have complex internal structure which supports such dependencies.

The general notation for a function sort is

(x1 : τ1), . . . , (xn : τn)⇒ (−, τ)

The variables xi representing the arguments are dummy variables (they
are “bound” in this expression) Distinct function sort expressions (including
ones which might appear as τi’s or parts of τi’s) have different dummy vari-
ables. Each τi is an expression representing the sort of xi, which may be an
object or a function sort and is allowed to include xj’s only for j < i. The
output sort τ will be an object sort, not a function sort, and may include
any of the xi.

A species of notation for a function used in Lestrade output is

(x1 : τ1), . . . , (xn : τn)⇒ (y, τ),

where y is an expression for the value of the function which may of course
include any or all of the xi’s (and which must be of the object sort τ): the
formation rules for such an expression are the same as for function sorts: the
function sort expression (x1 : τ1), . . . , (xn, τn) ⇒ (−, τ) must be well-formed
for the expression above to be well-formed.

When a function is declared in Lestrade and explicitly defined, the sort
reported for it is actually this notation for it. The user will always refer to
it using its name (the identifier declared with this type): users do not enter
function sort notations or function notations.

The account given here should allow the reader to make a stab at inter-
preting details of Lestrade responses to user commands which we skated over
above.

4 The care and feeding of declarations: the

system of possible worlds or “moves”

We have to give an account of the declaration environments of Lestrade.
We’ll do this in the simplest way (in which all declared environments are

23

anonymous and in a sense ephemeral: we will look at the consequences of
allowing environments to be named and saved in an appended subsection).

In the simplest model of what we are doing, the Lestrade user is working in
a finite sequence of environments indexed by natural numbers, called “move
0”, “move 1”,. . . ,“move i”, “move i + 1”. Move i is called “the last move”
and move i+ 1 is called “the next move” (elsewhere sometimes “the current
move”). There are always at least two moves, so all four explicitly given
items are present, though they may not all be distinct. Each move contains
an ordered list of declarations of identifiers as representing entities of given
sorts. The sort of an identifier declared at a given sort will not mention
identifiers declared at moves of higher index or declared at the same move
but later in the list of declarations. Entities declared at the last move or
earlier moves are to be thought of as constant; entities declared at the next
move are to be thought of as variable.

By a fresh identifier we mean an identifier not declared at the moment in
any move. It will never be the case that the same identifier is declared more
than once.

The declare command takes a fresh identifier and an object or function
sort as its two arguments (in that order) and declares the identifier as a
variable of the given sort in the next move (placed last in the order on the
move). Object sorts are represented by prop, obj, type, or by that p when p
is of sort prop, or in τ when τ is of sort type. Function sorts are represented
by terms [x1, . . . , xn ⇒ τ] where the xi’s are variables declared in the next
move and τ is an object term.

The postulate command takes a fresh identifier followed by zero or more
arguments (variables declared previously at the next move, appearing in the
order in which their declarations appear in the next move), followed by an
object sort [optionally separated from the previous arguments by a colon
“:”; this is sometimes mandatory for the sake of the parser]. If there are
zero arguments, the identifier is declared as being of the given sort, but at
(the end of) the last move rather than the next move. This can be thought
of as declaring a constant (relatively speaking, as we will see). If there are
arguments xi of types τi and the output type is τ , the identifier is declared
at the last move (not at the next move!) and appearing finally in the order
on the last move, as a function of sort

(x1 : τ1), . . . , (xn : τn)⇒ (−, τ)

24

(with the refinement that the names of the parameters, since they become
bound, are systematically changed).

The postulate command can be thought of as declaring axioms and
primitive notions, when it is used when i = 0. At higher indexed moves,
what it is doing is subtler, but will become evident with experience: we
will see that in combination with the open and close commands it allows
declaration of function variables.

The define command is a sister command of the postulate command:
the keyword is followed by an identifier, then by zero or more arguments,
variables xi of type τi appearing in the same order in which they were de-
clared, then by a Lestrade expression y of an object type [always separated
from the previous arguments by a colon :]. The identifier is defined at the
last move (not the next move), and finally in the order on the last move, as

(x1 : τ1), . . . , (xn, τn)⇒ (y, τ),

as long as sort checking reports that this is possible [in the case where there
are no arguments, it is just defined as y]. Identifiers declared in this way are
not eligible to serve as arguments of functions (they are not variables).

The open command introduces a new move with the index i + 2: as it
were, the parameter i is incremented, so that the old “next move”, move
i+ 1, becomes the new “last move”, and the new move i+ 2 is the new next
move. We call this action “opening move i+ 2”.

The close command erases all information in move i+ 1 and decrements
the parameter i, if i > 1; it is not possible to close move 1. The old “last
move” move i becomes the new next move, and move i− 1 becomes the new
last move. We call this action “closing move i+ 1”.

The clearcurrent command removes all declarations from move i+1 but
does not decrement the counter: at the end of this action, move i is unchanged
and move i + 1 is empty. This amounts to clearing accumulated variable
declarations; it is needed because there is no other way to remove declarations
from move 1. It will be a while before we see uses of this command: over
a large initial segment of the document, we will suppose that the program
remembers all previous move 1 declarations (which can cause the namespace
to get rather cluttered!)

There are devices whereby moves can be saved and then reopened after
being closed, which lead to some complexities, but these can be ignored for
the present.

25

It may seem that we cannot create a function variable (recall that we
said above that functions can have functions as arguments) but we can and
in fact we have already illustrated this in an example above. One creates
a function variable in move i + 1 by opening move i + 2, declaring desired
variable parameters, postulateing a function of the desired type in move i+1
in its then role as the last move, then closing move i + 2 whereupon the
constructed function is now a variable. We did this (and the reader may now
review the example to see that it conforms with our account) in postulateing
Deduction above, which needed the function parameter ded.

Functions found in the next move which were introduced by the define

command when there were more moves do not become variables: they are
as it were “variable expressions”, and a distinctive point about these is that
where they are used in the final argument of a define command they must be
expanded out (as proptest2 was in an example above) as a defined identifier
at move i + 1 cannot appear in a declaration at move i. Where a defined
operator declared at the last move is used in applied position, its application
is carried out (suitable substitutions are made) as in the example above;
where it appears as an argument it is replaced by its anonymous formal
notation.

A further point about declarations of functions which must be noted,
though its details are nasty, is the permission we give ourselves to not give
all arguments of a function under certain circumstances. In fact, any non-
defined identifier declared at the next move appearing in the sort of a variable
appearing as an argument of a function must itself be an earlier argument
of that function: the input/output mechanism of Lestrade itself allows us to
hide this, omitting arguments when their presence can be deduced. If we did
not do this, we would have a lot of arguments in argument lists which “felt”
redundant, like A and B as arguments of Andproof0 (it being evident from
the sorts of aa and bb what A and B must be).

We make a philosophical remark at this point. The currently popular
view of the nature of functions is that they are as it were actually infinite
tables containing all their values. We resist this. We regard a function as
determined by a specification of how a value is to be obtained (or, in the
case of a primitive notion, simply that a value of given sort can be obtained)
from any given sequence of inputs of appropriate sorts which may happen to
be presented now or in the future, not from all possible such sequences in a
way given all at once. The arbitrary objects used as inputs in a function
definition can each be viewed as a single object drawn from a “possible

26

world” (“the next move”) accessible from the world which is our current
standing point (“the last move”). Another metaphor which might be helpful
is that objects at the next move are things to be chosen in the future; we
do not know anything about them except what is given in their sort. When
we declare a function as a primitive, we declare that there is a construction
principle which for any given inputs of given types will give an output of that
type: we do not presume that we have given such outputs for all possible
inputs (such outputs are produced on demand when we apply the constructed
function to specific inputs). In this way we preserve the possibility of the
view that all infinities are potential, never completely realized. Nonetheless,
the mathematical consequences of the particular Lestrade theory we present
are fully classical.

4.1 Namespace management refined: saving and re-
trieving environments

With the limited environment handling given above, there is no way to re-
move or revise declarations of variables and variable expressions in move 1
other than clearing all of them. After a while, it is quite hard to remem-
ber what sorts have been assigned to parameters and variable expressions,
and for that matter what order they appear in (recalling that parameters in
postulate and define commands must appear in order of declaration). We
have already noted that the clearcurrent command will clear all declara-
tions at the next move.

More intelligent namespace management is supported by the full specifi-
cation of the open, clearcurrent, and save commands.

Each move is assigned a name. The default name is its numeral index (the
j such that it is move j). The command save envname will save the next
move with the name envname, associated with the list of names of preceding
moves at the time it is saved (a saved move is actually identified by the
sequence of names of all moves at the time it is saved, and this is how it is
identified internally; this means that moves saved in different contexts can
quite safely be tagged with the same name). The command open envname

will open an already existing move (of the right index, wth the same preceding
moves) with the name envname or if there is no such move, or create a new
blank move with that name. The command clearcurrent envname will
clear the net move and replace it with a move named envname if there is

27

such a move with the appropriate preceding names of moves associated with
it or replace it with a blank move of that name otherwise. A move cannot
be saved or opened with its default numeral name: the reason for this is
that we do not want the parameterless open or clearcurrent command to
unexpectedly invoke declarations from a saved environment. For the same
reason, no move other than move 0 in the sequence of moves associated with
a named move created by an application of save, open, or clearcurrent

may have its default numeral name.
Any identifiers in a saved environment which conflict with identifiers de-

clared in earlier moves since it was saved have ’ or $ appended to them,
depending on whether they are alphanumeric or special character identifiers.
Identifiers ending in these characters cannot be declared by the user.

The effect of all of this is that that instead of having a linear sequence
of moves, which we can think of as times or possible worlds, we have a tree
structure.2

5 A proof as an example A ∧B → B ∧ A.

We give the proof of a simple theorem of propositional logic, then present
the proof in the form of Lestrade declarations.

Theorem: A ∧B → B ∧ A
Assume A∧B for the sake of argument: our goal is to show that B∧A
follows.

B follows from A ∧ B by simplification. A follows from A ∧ B by
simplification.

The local conclusion B ∧ A follows by conjunction from B and A.

By deduction, we can conclude A ∧B → B ∧ A.

Lestrade execution:

open

2which can still be thought of using a temporal metaphor as working out the conse-
quences of different choices on alternative timelines, as it were.

28

declare yy that A & B

>> yy: that (A & B) {move 2}

define zz yy : Simplification1 yy

>> zz: [(yy_1:that (A & B)) => (---:that

>> A)]

>> {move 1}

define ww yy : Simplification2 yy

>> ww: [(yy_1:that (A & B)) => (---:that

>> B)]

>> {move 1}

define uu yy : Andproof (ww yy, zz yy)

>> uu: [(yy_1:that (A & B)) => (---:that

>> (B & A))]

>> {move 1}

close

define Andconj A B: Deduction uu

>> Andconj: [(A_1:prop),(B_1:prop) => (Deduction([(yy_2:

>> that (A_1 & B_1)) => ((Simplification2(yy_2)

>> Andproof Simplification1(yy_2)):that

29

>> (B_1 & A_1))])

>> :that ((A_1 & B_1) -> (B_1 & A_1)))]

>> {move 0}

The Lestrade declarations given embody the proof given. One very subtle
point is that the functions ww and yy are distinct from Simplification1 and
Simplification2, because the latter functions take additional arguments
which are not visible.

A point to note is that the argument under the hypothesis A ∧ B, as-
sumed for the sake of argument, corresponds to the introduction of a new
environment by the open command in which the variable yy of sort that

(A&B) is declared.

6 The Lestrade user input language

We discuss practical details of entering mathematical expressions in the lan-
guage of Lestrade. This section concentrates on what users can enter at the
keyboard.

Lestrade identifiers are the first detail of the syntax. An identifier is a
string of characters of positive length, consisting of zero or one capital letters,
followed by zero or more lower case letters, followed by zero or more numerals.

A Lestrade object expression is either an identifier declared of an object
sort, or an application expression f(t1, . . . , tn) where f is an identifier de-
clared as of function type with n arguments, and t1, . . . , tn are expressions
of the correct sorts (some may be function expressions). A mixfix expression
(t1 f t2, . . . , tn) is well-formed under the same conditions and has the same
referent.

The parentheses and commas in these expressions may be omitted under
some circumstances. All infix and mixfix operators have the same precedence
and group to the right (in the absence of restrictive punctuation they will take
as many arguments as they can). A function symbol used as an argument
must be followed by a comma or parenthesis to avoid it attempting to take
the next expression as an argument. A parenthesis following a function
symbol will always be taken as opening an argument list (so if one wants
to enclose the first argument in parentheses one must also enclose the entire

30

argument list in parentheses). A function symbol representing a function
taking more than one argument must be preceded by a comma when it might
otherwise take a preceding object expression as a first argument [reading a
mixfix expression]. A function symbol appearing as the first argument of
a mixfix expression must be enclosed in parentheses to avoid the function
symbol trying to eat the mixfix.

Function expressions include identifiers declared as of function type, and
expressions f(t1, . . . , tm) where m < n, the number of arguments taken by
f . Such expressions are understood as functions of (xm+1, . . . , xn), and may
only appear as arguments, not function or mixfix symbols. The parentheses
around the argument list in such a function expression are mandatory. In
addition, there are λ-terms of quite general form, [x1, . . . , xn ⇒ T] where the
xi’s are variables declared at the next move and T is an object term.

An additional important punctuation device is the use of a colon : to
separate the final argument of a postulate or define command from the
preceding arguments. The colon is optional in the postulate command (in
earlier versions it was sometimes needed if the final preceding argument was
a function identifier; it is now (we believe) always optional); it is mandatory
in the define command. (The colon is neither needed nor allowed in the
declare command).

Lestrade output will use infix form for functions of two arguments where
the first argument is not of function type. Lestrade output will never use
mixfix notation for functions of more than two arguments.

In general, problems with parsing of input notation can be solved by
explicitly writing more parentheses and commas. In Lestrade output, all
parentheses and commas are shown.

7 We begin considering ontology: equality

primitives introduced. The biconditional

as equality on propositions. Identification

of proofs of the same proposition.

We are by no means through with logic, but we will begin to consider the
treatment of objects. In this section we introduce the notion of equality and
its basic primitives. Equality is defined for typed mathematical objects: re-

31

lated notions applying to propositions and their proofs are discussed, and
defining equality for untyped mathematical objects of sort obj is straightfor-
ward but not discussed here.

Lestrade execution:

declare T type

>> T: type {move 1}

declare tt1 in T

>> tt1: in T {move 1}

declare tpred [tt1 => prop] \

>> tpred: [(tt1_1:in T) => (---:prop)]

>> {move 1}

We introduce a general object type T which will be a hidden parameter
of our notions of equality.3 We then introduce a predicate tpred of objects
of type T (i.e, of sort in T).

3The implicit argument feature in effect allows overloading of equality as an operation
on each type; it was very annoying in earlier versions without this feature that equality
on typed objects was a ternary relation and so had quite unexpected syntax. Genuine
overloading could be achieved by for example declaring an addition operator + in every
type without exception and providing for its properties by axioms in each type where it is
to be used independently. Things that one expects to be uniformly true of all + operations
(commutativlty, for example) could be stipulated as axioms.

32

Lestrade execution:

declare t in T

>> t: in T {move 1}

declare u in T

>> u: in T {move 1}

postulate = t u : prop

>> =: [(.T_1:type),(t_1:in .T_1),(u_1:in .T_1)

>> => (---:prop)]

>> {move 0}

declare eqev that t=u

>> eqev: that (t = u) {move 1}

We introduce the primitive notion of equality and evidence of equality
t = u.

Lestrade execution:

declare tpredev that tpred t

>> tpredev: that tpred(t) {move 1}

33

postulate Substitution0 tpred, eqev tpredev \

that tpred u

>> Substitution0: [(.T_1:type),(tpred_1:[(tt1_2:

>> in .T_1) => (---:prop)]),

>> (.t_1:in .T_1),(.u_1:in .T_1),(eqev_1:

>> that (.t_1 = .u_1)),(tpredev_1:that tpred_1(.t_1))

>> => (---:that tpred_1(.u_1))]

>> {move 0}

define Substitution eqev tpredev : Substitution0 \

tpred, eqev tpredev

>> Substitution: [(.T_1:type),(.t_1:in .T_1),

>> (.u_1:in .T_1),(eqev_1:that (.t_1 = .u_1)),

>> (.tpred_1:[(tt1_2:in .T_1) => (---:prop)]),

>> (tpredev_1:that .tpred_1(.t_1)) => (Substitution0(.tpred_1,

>> eqev_1,tpredev_1):that .tpred_1(.u_1))]

>> {move 0}

We introduce the substitution rule of equality, whose type is perhaps the
most complex yet introduced. There are two different versions with different
choices of explicitly given arguments.

Lestrade execution:

postulate Reflexeq t : that t=t

>> Reflexeq: [(.T_1:type),(t_1:in .T_1) => (---:

>> that (t_1 = t_1))]

34

>> {move 0}

The other primitive rule of equality is the reflexivity rule t = t. We will
see that other familiar rules of equality such as symmetry and transitivity
can be proved.

Lestrade execution:

open

declare t17 in T

>> t17: in T {move 2}

declare u17 in T

>> u17: in T {move 2}

declare v17 in T

>> v17: in T {move 2}

declare eqev17 that t17=u17

>> eqev17: that (t17 = u17) {move 2}

define eqsymm0 eqev17: Substitution0 [v17 \

35

=> v17=t17] \

, eqev17 Reflexeq t17

>> eqsymm0: [(.t17_1:in T),(.u17_1:in T),

>> (eqev17_1:that (.t17_1 = .u17_1)) =>

>> (---:that (.u17_1 = .t17_1))]

>> {move 1}

close

define Eqsymm eqev : eqsymm0 eqev

>> Eqsymm: [(.T_1:type),(.t_1:in .T_1),(.u_1:

>> in .T_1),(eqev_1:that (.t_1 = .u_1)) =>

>> (Substitution0([(v17_2:in .T_1) => ((v17_2

>> = .t_1):prop)]

>> ,eqev_1,Reflexeq(.t_1)):that (.u_1 = .t_1))]

>> {move 0}

We present the proof of symmetry of equality. Notice the use of a variable
binding term for the predicate in the crucial substitution step.

Other notions of equality for sorts of functions may be introduced, as well
as equality for untyped objects of sort obj.

We introduce the biconditional, which plays the role of equality for propo-
sitions.

Lestrade execution:

define <-> A B : (A -> B) & (B -> A)

>> <->: [(A_1:prop),(B_1:prop) => (((A_1 ->

>> B_1) & (B_1 -> A_1)):prop)]

>> {move 0}

36

declare ppred [A => prop] \

>> ppred: [(A_1:prop) => (---:prop)]

>> {move 1}

declare iffev that A <-> B

>> iffev: that (A <-> B) {move 1}

declare ppredev that ppred A

>> ppredev: that ppred(A) {move 1}

postulate Substitutionp0 ppred, iffev ppredev: \

that ppred B

>> Substitutionp0: [(ppred_1:[(A_2:prop) =>

>> (---:prop)]),

>> (.A_1:prop),(.B_1:prop),(iffev_1:that

>> (.A_1 <-> .B_1)),(ppredev_1:that ppred_1(.A_1))

>> => (---:that ppred_1(.B_1))]

>> {move 0}

define Substitutionp iffev ppredev : Substitutionp0 \

37

ppred, iffev ppredev

>> Substitutionp: [(.A_1:prop),(.B_1:prop),(iffev_1:

>> that (.A_1 <-> .B_1)),(.ppred_1:[(A_2:

>> prop) => (---:prop)]),

>> (ppredev_1:that .ppred_1(.A_1)) => (Substitutionp0(.ppred_1,

>> iffev_1,ppredev_1):that .ppred_1(.B_1))]

>> {move 0}

define Reflexp0 A : Deduction [aaa1 => aaa1] \

>> Reflexp0: [(A_1:prop) => (Deduction([(aaa1_2:

>> that A_1) => (aaa1_2:that A_1)])

>> :that (A_1 -> A_1))]

>> {move 0}

declare afix that A

>> afix: that A {move 1}

define propfixform A afix : afix

>> propfixform: [(A_1:prop),(afix_1:that A_1)

>> => (afix_1:that A_1)]

>> {move 0}

define Reflexp A : propfixform (A<->A,Andproof(Reflexp0 \

38

A,Reflexp0 A))

>> Reflexp: [(A_1:prop) => (((A_1 <-> A_1) propfixform

>> (Reflexp0(A_1) Andproof Reflexp0(A_1))):

>> that (A_1 <-> A_1))]

>> {move 0}

define Reflexp1 A: Andproof(Reflexp0 A,Reflexp0 \

A)

>> Reflexp1: [(A_1:prop) => ((Reflexp0(A_1)

>> Andproof Reflexp0(A_1)):that ((A_1 ->

>> A_1) & (A_1 -> A_1)))]

>> {move 0}

We make some observations about the biconditional development. A
primitive Substitutionp is needed to justify substitution of logically equiv-
alent propositions in general contexts, but the reflexivity property Reflexp

is a theorem derivable from primitives we have already. Notice the use of
propfixform to force the type of the output of Reflexp into the correct form:
what happens if we don’t use it is exhibited in the declaration of Reflexp1.
The Lestrade matching facility is good enough that in fact Reflexp1 would
be usable for exactly the same purposes as Reflexp; the two functions match
in type because Lestrade recognizes that the type of one is a definitional ex-
pansion of the type of the other. The pragmatic advantages of Reflexp for
user understanding of what is going on are clear.

A notion of equality for objects of sorts that p (proofs or evidence) could
be defined by analogy with what is given above for objects of sorts in p, and
such a development could be given. A radical alternative (not appropriate
for example for a constructive logic) is the following:

Lestrade execution:

39

declare proofpred [aaa1 => prop] \

>> proofpred: [(aaa1_1:that A) => (---:prop)]

>> {move 1}

declare proofpredev that proofpred aa

>> proofpredev: that proofpred(aa) {move 1}

declare aax that A

>> aax: that A {move 1}

postulate Indifference proofpredev aax : \

that proofpred aax

>> Indifference: [(.A_1:prop),(.proofpred_1:

>> [(aaa1_2:that .A_1) => (---:prop)]),

>> (.aa_1:that .A_1),(proofpredev_1:that

>> .proofpred_1(.aa_1)),(aax_1:that .A_1)

>> => (---:that .proofpred_1(aax_1))]

>> {move 0}

The primitive Indifference takes a proof that a first proof of p satisfies
a predicate of proofs, and another proof of p, to a proof that the second proof
of p satisfies the same predicate. In other words, Indifference witnesses
the fact that each type that p is in effect inhabited by no more than one

40

object.
To assume such an axiom is optional. If a constructive logic were pre-

ferred, in which information could be extracted from proofs, one would cer-
tainly not want such an axiom. It should be noted in general that Lestrade
is a very flexible framework in which many different logical approaches can
be implemented: our particular development of logical and mathematical
concepts is in no way dictated by the framework.

7.1 Equality and type constructions

In this section we complete the primitives needed for Cartesian products and
function spaces. Analogous constructions for propositions would be wanted in
a constructive logic in which one wanted to extract information from proofs.

We implement the identities π1(x, y) = x; π2(x, y) = y; (π1(x), π2(x)) = x.

Lestrade execution:

postulate Proj1 aat bbt : that proj1 (Pair \

aat bbt) = aat

>> Proj1: [(.At_1:type),(aat_1:in .At_1),(.Bt_1:

>> type),(bbt_1:in .Bt_1) => (---:that (proj1((aat_1

>> Pair bbt_1)) = aat_1))]

>> {move 0}

postulate Proj2 aat bbt : that proj2 (Pair \

aat bbt) = bbt

>> Proj2: [(.At_1:type),(aat_1:in .At_1),(.Bt_1:

>> type),(bbt_1:in .Bt_1) => (---:that (proj2((aat_1

>> Pair bbt_1)) = bbt_1))]

>> {move 0}

41

postulate Proj3 xxt : that Pair(proj1 xxt, \

proj2 xxt) = xxt

>> Proj3: [(.At_1:type),(.Bt_1:type),(xxt_1:

>> in (.At_1 X .Bt_1)) => (---:that ((proj1(xxt_1)

>> Pair proj2(xxt_1)) = xxt_1))]

>> {move 0}

We implement the identities (λx.T)(a) = T [a/x] (β-reduction) and ex-
tensionality for function objects.

Lestrade execution:

declare aat3 in At

>> aat3: in At {move 1}

postulate Betared dedt, aat3 : that Apply(Lambda \

dedt, aat3) = dedt aat3

>> Betared: [(.At_1:type),(.Bt_1:type),(dedt_1:

>> [(aat2_2:in .At_1) => (---:in .Bt_1)]),

>> (aat3_1:in .At_1) => (---:that ((Lambda(dedt_1)

>> Apply aat3_1) = dedt_1(aat3_1)))]

>> {move 0}

declare dedt2 [aat3 => in Bt] \

42

>> dedt2: [(aat3_1:in At) => (---:in Bt)]

>> {move 1}

declare fnext [aat3 => that dedt aat3 = dedt2 \

aat3] \

>> fnext: [(aat3_1:in At) => (---:that (dedt(aat3_1)

>> = dedt2(aat3_1)))]

>> {move 1}

postulate Fnext fnext that (Lambda dedt) \

= Lambda dedt2

>> Fnext: [(.At_1:type),(.Bt_1:type),(.dedt_1:

>> [(aat2_2:in .At_1) => (---:in .Bt_1)]),

>> (.dedt2_1:[(aat3_3:in .At_1) => (---:in

>> .Bt_1)]),

>> (fnext_1:[(aat3_4:in .At_1) => (---:that

>> (.dedt_1(aat3_4) = .dedt2_1(aat3_4)))])

>> => (---:that (Lambda(.dedt_1) = Lambda(.dedt2_1)))]

>> {move 0}

8 Natural numbers introduced

In this section, we introduce the natural numbers, via the concept of iterated
application of functions.

Lestrade execution:

43

postulate Nat type

>> Nat: type {move 0}

postulate 0 in Nat

>> 0: in Nat {move 0}

declare n1 in Nat

>> n1: in Nat {move 1}

postulate Succ n1 in Nat

>> Succ: [(n1_1:in Nat) => (---:in Nat)]

>> {move 0}

The primitive notions of arithmetic are introduced. These are the type
of natural numbers, the number zero, and the successor operation. We will
next define iteration of a function a number of times, and we will see later
that addition and multiplication are then definable.

Lestrade execution:

declare nnn2 in Nat

>> nnn2: in Nat {move 1}

44

declare Tt [nnn2 => type] \

>> Tt: [(nnn2_1:in Nat) => (---:type)]

>> {move 1}

open

declare nn2 in Nat

>> nn2: in Nat {move 2}

declare ttt1 in Tt nn2

>> ttt1: in Tt(nn2) {move 2}

postulate F ttt1 in Tt (Succ nn2)

>> F: [(.nn2_1:in Nat),(ttt1_1:in Tt(.nn2_1))

>> => (---:in Tt(Succ(.nn2_1)))]

>> {move 1}

close

declare init in Tt 0

45

>> init: in Tt(0) {move 1}

declare n in Nat

>> n: in Nat {move 1}

postulate Iterate F, init n : in Tt n

>> Iterate: [(.Tt_1:[(nnn2_2:in Nat) => (---:

>> type)]),

>> (F_1:[(.nn2_3:in Nat),(ttt1_3:in .Tt_1(.nn2_3))

>> => (---:in .Tt_1(Succ(.nn2_3)))]),

>> (init_1:in .Tt_1(0)),(n_1:in Nat) => (---:

>> in .Tt_1(n_1))]

>> {move 0}

define Iterate0 Tt, F, init n: Iterate F, \

init n

>> Iterate0: [(Tt_1:[(nnn2_2:in Nat) => (---:

>> type)]),

>> (F_1:[(.nn2_3:in Nat),(ttt1_3:in Tt_1(.nn2_3))

>> => (---:in Tt_1(Succ(.nn2_3)))]),

>> (init_1:in Tt_1(0)),(n_1:in Nat) => (Iterate(F_1,

>> init_1,n_1):in Tt_1(n_1))]

>> {move 0}

postulate Initialize F, init : that (Iterate \

F, init 0) = init

46

>> Initialize: [(.Tt_1:[(nnn2_2:in Nat) => (---:

>> type)]),

>> (F_1:[(.nn2_3:in Nat),(ttt1_3:in .Tt_1(.nn2_3))

>> => (---:in .Tt_1(Succ(.nn2_3)))]),

>> (init_1:in .Tt_1(0)) => (---:that (Iterate(F_1,

>> init_1,0) = init_1))]

>> {move 0}

postulate Iterstep F, init n : that \

(Iterate F, init (Succ n)) = F(Iterate F, \

init n)

>> Iterstep: [(.Tt_1:[(nnn2_2:in Nat) => (---:

>> type)]),

>> (F_1:[(.nn2_3:in Nat),(ttt1_3:in .Tt_1(.nn2_3))

>> => (---:in .Tt_1(Succ(.nn2_3)))]),

>> (init_1:in .Tt_1(0)),(n_1:in Nat) => (---:

>> that (Iterate(F_1,init_1,Succ(n_1)) =

>> (n_1 F_1 Iterate(F_1,init_1,n_1))))]

>> {move 0}

We introduce the basic equations governing iterated application of a func-
tion. The fact that the type of the output can depend on a numerical argu-
ment will be used below in exhibiting the proof of the principle of mathemat-
ical induction. The type valued function Tt can be taken to be constant and
the function F to be not dependent on the numerical argument to support
simple iteration.

Note that the function variable F really needs to be declared in an open/close
block if it is to have the syntax with which it is presented, because it has
an implicit argument; there is no provision for function variables declared in
one-line declarations to have implicit arguments.

Lestrade execution:

47

declare nn99 in Nat

>> nn99: in Nat {move 1}

declare tt99 in T

>> tt99: in T {move 1}

declare F99 [tt99 => in T] \

>> F99: [(tt99_1:in T) => (---:in T)]

>> {move 1}

declare init98 in T

>> init98: in T {move 1}

declare n98 in Nat

>> n98: in Nat {move 1}

define Simpleiter F99, init98 n98 : \

Iterate [nn99,tt99=>F99 tt99] \

48

, init98 n98

>> Simpleiter: [(.T_1:type),(F99_1:[(tt99_2:

>> in .T_1) => (---:in .T_1)]),

>> (init98_1:in .T_1),(n98_1:in Nat) => (Iterate([(nn99_4:

>> in Nat),(tt99_4:in .T_1) => (F99_1(tt99_4):

>> in .T_1)]

>> ,init98_1,n98_1):in .T_1)]

>> {move 0}

define Simpleiter2 F99, init98 n98 : Iterate \

[nn99,tt99=>F99 tt99] \

, init98 n98

>> Simpleiter2: [(.T_1:type),(F99_1:[(tt99_2:

>> in .T_1) => (---:in .T_1)]),

>> (init98_1:in .T_1),(n98_1:in Nat) => (Iterate([(nn99_4:

>> in Nat),(tt99_4:in .T_1) => (F99_1(tt99_4):

>> in .T_1)]

>> ,init98_1,n98_1):in .T_1)]

>> {move 0}

define Simpleinit F99,init98 : Initialize\

\

[nn99,tt99=>F99 tt99] \

,init98

>> Simpleinit: [(.T_1:type),(F99_1:[(tt99_2:

>> in .T_1) => (---:in .T_1)]),

>> (init98_1:in .T_1) => (Initialize([(nn99_4:

>> in Nat),(tt99_4:in .T_1) => (F99_1(tt99_4):

>> in .T_1)]

>> ,init98_1):that (Iterate([(nn99_6:in Nat),

>> (tt99_6:in .T_1) => (F99_1(tt99_6):

49

>> in .T_1)]

>> ,init98_1,0) = init98_1))]

>> {move 0}

define Simpleiterstep F99,init98,n98 : Iterstep\

\

[nn99,tt99=>F99 tt99] \

, init98 n98

>> Simpleiterstep: [(.T_1:type),(F99_1:[(tt99_2:

>> in .T_1) => (---:in .T_1)]),

>> (init98_1:in .T_1),(n98_1:in Nat) => (Iterstep([(nn99_4:

>> in Nat),(tt99_4:in .T_1) => (F99_1(tt99_4):

>> in .T_1)]

>> ,init98_1,n98_1):that (Iterate([(nn99_6:

>> in Nat),(tt99_6:in .T_1) => (F99_1(tt99_6):

>> in .T_1)]

>> ,init98_1,Succ(n98_1)) = F99_1(Iterate([(nn99_8:

>> in Nat),(tt99_8:in .T_1) => (F99_1(tt99_8):

>> in .T_1)]

>> ,init98_1,n98_1))))]

>> {move 0}

We define simple iteration over a single type in terms of the more com-
plex notion of iteration which we take as primitive. The alternative version
Simpleiter2 will be set up for automatic rewriting in an example below.
Note the use of a bound variable term to refer to the form of F99 which has
an additional dummy natural number argument.

The very similar declarations which support the principle of mathemat-
ical induction follow. These are entirely analogous to the declarations for
iteration of a function through a sequence of types above, but working with
types of proofs or evidence rather than types of object, and analogues of
Initialize and Iterstep do not seem to be required as we do not gener-
ally consider equations between proofs.

50

Fp is declared in an open/close block so that it can have an implicit
argument.

Lestrade execution:

declare nn2 in Nat

>> nn2: in Nat {move 1}

declare Pp [nn2 => prop] \

>> Pp: [(nn2_1:in Nat) => (---:prop)]

>> {move 1}

open

declare n2 in Nat

>> n2: in Nat {move 2}

declare t1 that Pp n2

>> t1: that Pp(n2) {move 2}

postulate Fp t1 that Pp (Succ n2)

51

>> Fp: [(.n2_1:in Nat),(t1_1:that Pp(.n2_1))

>> => (---:that Pp(Succ(.n2_1)))]

>> {move 1}

close

declare initp that Pp 0

>> initp: that Pp(0) {move 1}

declare np in Nat

>> np: in Nat {move 1}

postulate Iteratep Fp, initp np : that Pp \

np

>> Iteratep: [(.Pp_1:[(nn2_2:in Nat) => (---:

>> prop)]),

>> (Fp_1:[(.n2_3:in Nat),(t1_3:that .Pp_1(.n2_3))

>> => (---:that .Pp_1(Succ(.n2_3)))]),

>> (initp_1:that .Pp_1(0)),(np_1:in Nat)

>> => (---:that .Pp_1(np_1))]

>> {move 0}

Technical note: We discuss the question of the most general form an
iteration operator can take in the Lestrade sort system. If f takes an argu-
ment t of type τ1 to type τ(t), there is no latitude for τ(t) to be anything
but τ1 for iteration to be possible. Suppose that f actually takes an ad-
ditional hidden argument, so its actual form is f(u, t), where t is of type

52

τ1(u) and the output is of type τ(u, t). For iteration to be possible, it must
be the case that τ(u, t) = τ1(g(u, t)), where g(u, t) is of the same constant
sort as u. Now we want to define Iterate f, init, n so that Iterate f,

init, 0 is init and Iterate f, init, Succ n is f(Iterate f, init,

n). The sorts of f(Iterate(f, init, n)) and Iterate(f, init, Succ n) have
to match. The first must take the form τ(g(u, Iterate(f, init, n)), where
the sort of Iterate(f,init,n)) is τ1(u). This tells us something about
the output type of Iterate f,init,n: its output type must be a fixed
function τ1 of a parameter u extractible from the argument list f,init,n:
write this U(f,init,n). From this it follows that the type of Iterate f,

init, Succ n is τ1(U(f, init, Succ n)). So τ1(U(f, init, Succ n) must match
τ(g(U(f, init, n), Iterate(f, init, n)). It can readily be seen that there is no
actual dependence on Iterate(f,init,n) in the second term, since there
is none in the first term. It appears in fact that the only way to achieve
this compatible with the type matching facilities we have so far, which are
entirely based on literal matching of terms supplemented with definitional
expansion, is τ = τ1, g(f, init, n) = Succ n, whence u = n, which yields the
form of Iterate given above.

Under the rewriting facilities of Lestrade not yet described, it may be
possible to implement a more general form of iteration; we will revisit this
later. In fact it seems pretty clear to us that the rewrite facility would
handle iteration of a function f(u, t) with t of type τ(u) and output type
τ(g(u)), where the type of fn(u, t) would be τ(gn(u)), for general τ and g:
rewriting would allow the matching of types τ(g(Simpleiter(g, init, n)) and
τ(Simpleiter(g, init, Succ n)), and considerations above indicate that this
is the most general form of iteration we can expect to support. It appears
that this would not require any additional primitives: the more general iter-
ation would be definable in terms of the primitives already given. Additional
primitives would be needed, precisely analogous to the ones we have, if we
wanted to iterate functions applied to the sorts prop, type, or obj (the last
being a case we would be very likely to want).

The code implementing the abstract iteration just discussed now appears
here, but without comment! Real comments would require an introduction
to the rewriting feature of Lestrade. It would also be of interest (if an ap-
plication of this form of iteration comes into view) to see if this form is
actually usable (does the rewriting feature actually support sort inference
where things are more concrete?).

53

Lestrade execution:

declare U30 type

>> U30: type {move 1}

declare u30 in U30

>> u30: in U30 {move 1}

declare n30 in Nat

>> n30: in Nat {move 1}

open

declare u31 in U30

>> u31: in U30 {move 2}

postulate g30 u31 in U30

>> g30: [(u31_1:in U30) => (---:in U30)]

>> {move 1}

postulate tau30 u31 type

54

>> tau30: [(u31_1:in U30) => (---:type)]

>> {move 1}

declare t31 in tau30 u31

>> t31: in tau30(u31) {move 2}

postulate f30 u31 t31 in tau30 g30 u31

>> f30: [(u31_1:in U30),(t31_1:in tau30(u31_1))

>> => (---:in tau30(g30(u31_1)))]

>> {move 1}

close

declare t30 in tau30 u30

>> t30: in tau30(u30) {move 1}

rewritep Iterwrite u30, n30, g30, Simpleiter2 \

g30, u30, Succ n30, g30(Simpleiter2 g30, \

u30, n30)

>> Iterwrite’’: [(Iterwrite’’’_1:in U30) =>

>> (---:prop)]

>> {move 1}

55

>> Iterwrite’: that Iterwrite’’(Simpleiter2(g30,

>> u30,Succ(n30))) {move 1}

>> Iterwrite: [(.U30_1:type),(u30_1:in .U30_1),

>> (n30_1:in Nat),(g30_1:[(u31_2:in .U30_1)

>> => (---:in .U30_1)]),

>> (Iterwrite’’_1:[(Iterwrite’’’_3:in .U30_1)

>> => (---:prop)]),

>> (Iterwrite’_1:that Iterwrite’’_1(Simpleiter2(g30_1,

>> u30_1,Succ(n30_1)))) => (---:that Iterwrite’’_1(g30_1(Simpleiter2(g30_1,

>> u30_1,n30_1))))]

>> {move 0}

rewritep Iterwrite2 u30, g30, Simpleiter2 \

g30, u30, 0, u30

>> Iterwrite2’’: [(Iterwrite2’’’_1:in U30) =>

>> (---:prop)]

>> {move 1}

>> Iterwrite2’: that Iterwrite2’’(Simpleiter2(g30,

>> u30,0)) {move 1}

>> Iterwrite2: [(.U30_1:type),(u30_1:in .U30_1),

>> (g30_1:[(u31_2:in .U30_1) => (---:in .U30_1)]),

>> (Iterwrite2’’_1:[(Iterwrite2’’’_3:in .U30_1)

>> => (---:prop)]),

>> (Iterwrite2’_1:that Iterwrite2’’_1(Simpleiter2(g30_1,

>> u30_1,0))) => (---:that Iterwrite2’’_1(u30_1))]

>> {move 0}

56

declare init32 in tau30 u30

>> init32: in tau30(u30) {move 1}

declare n32 in Nat

>> n32: in Nat {move 1}

open

declare n33 in Nat

>> n33: in Nat {move 2}

define Tt30 n33 : (Simpleiter2 g30, u30, \

n33)

>> Tt30: [(n33_1:in Nat) => (---:in U30)]

>> {move 1}

define Tt31 n33: tau30(Tt30 n33)

>> Tt31: [(n33_1:in Nat) => (---:type)]

>> {move 1}

57

declare n35 in Nat

>> n35: in Nat {move 2}

declare t35 in tau30(Tt30 n35)

>> t35: in tau30(Tt30(n35)) {move 2}

define f35 t35 : f30 (Tt30 n35,t35)

>> f35: [(.n35_1:in Nat),(t35_1:in tau30(Tt30(.n35_1)))

>> => (---:in tau30(g30(Tt30(.n35_1))))]

>> {move 1}

close

define Abstractiter f30, init32, n32: Iterate \

f35,init32,n32

>> Abstractiter: [(.U30_1:type),(.tau30_1:[(u31_2:

>> in .U30_1) => (---:type)]),

>> (.g30_1:[(u31_3:in .U30_1) => (---:in

>> .U30_1)]),

>> (f30_1:[(u31_4:in .U30_1),(t31_4:in .tau30_1(u31_4))

>> => (---:in .tau30_1(.g30_1(u31_4)))]),

>> (.u30_1:in .U30_1),(init32_1:in .tau30_1(.u30_1)),

>> (n32_1:in Nat) => (Iterate([(.n35_6:in

>> Nat),(t35_6:in .tau30_1(Simpleiter2(.g30_1,

>> .u30_1,.n35_6))) => ((Simpleiter2(.g30_1,

>> .u30_1,.n35_6) f30_1 t35_6):in .tau30_1(.g30_1(Simpleiter2(.g30_1,

>> .u30_1,.n35_6))))]

>> ,init32_1,n32_1):in .tau30_1(Simpleiter2(.g30_1,

58

>> .u30_1,n32_1)))]

>> {move 0}

9 The universal quantifier. Principle of math-

ematical induction.

In this section we introduce the notion of universal quantification (over types
of mathematical object) and develop the familiar form of the principle of
mathematical induction.

Lestrade execution:

postulate Forall tpred : prop

>> Forall: [(.T_1:type),(tpred_1:[(tt1_2:in

>> .T_1) => (---:prop)])

>> => (---:prop)]

>> {move 0}

declare univev that Forall tpred

>> univev: that Forall(tpred) {move 1}

declare ttt in T

>> ttt: in T {move 1}

postulate Uinst univev ttt : that tpred ttt

59

>> Uinst: [(.T_1:type),(.tpred_1:[(tt1_2:in

>> .T_1) => (---:prop)]),

>> (univev_1:that Forall(.tpred_1)),(ttt_1:

>> in .T_1) => (---:that .tpred_1(ttt_1))]

>> {move 0}

declare ugen [ttt => that tpred ttt] \

>> ugen: [(ttt_1:in T) => (---:that tpred(ttt_1))]

>> {move 1}

postulate Ugen ugen : that Forall tpred

>> Ugen: [(.T_1:type),(.tpred_1:[(tt1_2:in .T_1)

>> => (---:prop)]),

>> (ugen_1:[(ttt_3:in .T_1) => (---:that

>> .tpred_1(ttt_3))])

>> => (---:that Forall(.tpred_1))]

>> {move 0}

Here is the development of the universal quantifier (over a type) and its
basic rules. The usual notation for Forall(tpred) in mathematical text is
(∀x ∈ T : tpred(x)), where tpred(x) may be expanded out. This is read
“for all x in T , tpred(x)”. We should note that we are being bad here,
conflating x being of type T with x belonging to a set T . Our excuse for
this is that mathematical reasoning is usually done in an officially untyped
language, where actual types of mathematical object are usually referred to

60

via sets.
In contrast with Automath and other dependent type provers, evidence

for a universal statement is not identified with a suitable dependently typed
function, but is obtained by applying a suitable constructor to such a function
to get an object of the appropriate object type. This means that Lestrade, un-
like Automath, does not automatically support quantification over all sorts.
This weakness of the framework will turn out to be useful in the formulation
of an ambiguous version of the simple theory of types below.

Lestrade execution:

declare natpred [nn2 => prop] \

>> natpred: [(nn2_1:in Nat) => (---:prop)]

>> {move 1}

declare ind that Forall [nn2 => (natpred \

nn2) -> natpred (Succ nn2)] \

>> ind: that Forall([(nn2_1:in Nat) => ((natpred(nn2_1)

>> -> natpred(Succ(nn2_1))):prop)])

>> {move 1}

declare basis that natpred 0

>> basis: that natpred(0) {move 1}

61

Here are familiar prerequisites for mathematical induction, the basis step,
evidence for natpred(0), and the induction step, evidence for

(∀n ∈ Nat : natpred(n)→ natpred(n+ 1)).

Lestrade execution:

open

declare n2 in Nat

>> n2: in Nat {move 2}

declare indhyp that natpred n2

>> indhyp: that natpred(n2) {move 2}

define step1 n2 : Uinst ind n2

>> step1: [(n2_1:in Nat) => (---:that (natpred(n2_1)

>> -> natpred(Succ(n2_1))))]

>> {move 1}

define step2 n2 indhyp : Mp (indhyp,step1 \

n2)

>> step2: [(n2_1:in Nat),(indhyp_1:that natpred(n2_1))

>> => (---:that natpred(Succ(n2_1)))]

>> {move 1}

62

close

declare nq in Nat

>> nq: in Nat {move 1}

define Induction1 ind basis nq : Iteratep \

step2, basis, nq

>> Induction1: [(.natpred_1:[(nn2_2:in Nat)

>> => (---:prop)]),

>> (ind_1:that Forall([(nn2_3:in Nat) =>

>> ((.natpred_1(nn2_3) -> .natpred_1(Succ(nn2_3))):

>> prop)]))

>> ,(basis_1:that .natpred_1(0)),(nq_1:in

>> Nat) => (Iteratep([(n2_4:in Nat),(indhyp_4:

>> that .natpred_1(n2_4)) => ((indhyp_4

>> Mp (ind_1 Uinst n2_4)):that .natpred_1(Succ(n2_4)))]

>> ,basis_1,nq_1):that .natpred_1(nq_1))]

>> {move 0}

define Inductiona1 natpred, ind basis nq: Iteratep \

step2, basis, nq

declare nq2 in Nat

define Inductiona natpred, ind basis: Ugen([nq2=> Inductiona1 natpred,ind, basis,nq2])

define Induction ind basis : Ugen(Induction1 \

(ind, basis))

>> Induction: [(.natpred_1:[(nn2_2:in Nat) =>

>> (---:prop)]),

63

>> (ind_1:that Forall([(nn2_3:in Nat) =>

>> ((.natpred_1(nn2_3) -> .natpred_1(Succ(nn2_3))):

>> prop)]))

>> ,(basis_1:that .natpred_1(0)) => (Ugen([(nq_4:

>> in Nat) => (Induction1(ind_1,basis_1,

>> nq_4):that .natpred_1(nq_4))])

>> :that Forall(.natpred_1))]

>> {move 0}

Here is the proof of a standard form of mathematical induction. Induction1
generates instances of theorems proved by induction: Induction generates
universally quantified theorems derived by induction. The meat of the proof
lies in showing that the existence of a proof of Forall(indimp) yields a
function taking proofs of natpred(n) to proofs of natpred(Succ(n)), which
is what is required as input to Iteratep. The declaration of Induction is
a nice example of the use as an argument of a function defined by giving
another function a truncated argument list.

We think that it is interesting to contemplate the mathematical object
presented as the referent of Induction1 in the Lestrade reply to its declara-
tion.

It may seem odd that the induction step is the first argument rather
than the basis step: the reason for this is that Lestrade can reliably read the
hidden argument natpred from the induction step, but not so reliably from
the basis step.

10 Definitions and basic axioms for addition

and multiplication

In this section we define the notions of addition and multiplication and prove
the usual Peano “axioms” governing these operations. No new axioms are ac-
tually required: addition and multiplication are defined by iterating suitable
functions, and here natural numbers are entirely defined in terms of iteration
of abstract functions.

Lestrade execution:

64

declare N1 in Nat

>> N1: in Nat {move 1}

declare N2 in Nat

>> N2: in Nat {move 1}

define + N1 N2 : Simpleiter Succ, N1 N2

>> +: [(N1_1:in Nat),(N2_1:in Nat) => (Simpleiter(Succ,

>> N1_1,N2_1):in Nat)]

>> {move 0}

The sum N1 + N2 is defined as the result of iterating successor N2 times
starting at N1. The function Succ1 is needed because the function iterated in
the fully abstract case has an additional natural number argument which can
qualify types. Note that Lestrade does not need to be told that the function
Tt from natural numbers to types which is a hidden parameter of Iterate
is here the constant function whose value is Nat: its type inference is smart
enough to figure this out.

Lestrade execution:

define Addid N1: propfixform ((N1+0)=N1,Simpleinit \

Succ, N1)

>> Addid: [(N1_1:in Nat) => ((((N1_1 + 0) =

>> N1_1) propfixform Simpleinit(Succ,N1_1)):

65

>> that ((N1_1 + 0) = N1_1))]

>> {move 0}

define Additer N1 N2 : propfixform ((N1 + \

Succ N2)=Succ(N1 + N2), Simpleiterstep Succ, \

N1 N2)

>> Additer: [(N1_1:in Nat),(N2_1:in Nat) =>

>> ((((N1_1 + Succ(N2_1)) = Succ((N1_1 +

>> N2_1))) propfixform Simpleiterstep(Succ,

>> N1_1,N2_1)):that ((N1_1 + Succ(N2_1))

>> = Succ((N1_1 + N2_1))))]

>> {move 0}

Here the usual Peano axioms for addition are proved as instances of the
basic equations governing simple iteration.

Lestrade execution:

open

declare n2 in Nat

>> n2: in Nat {move 2}

declare n3 in Nat

>> n3: in Nat {move 2}

66

define addenone n3: n3+N1

>> addenone: [(n3_1:in Nat) => (---:in Nat)]

>> {move 1}

close

define * N1 N2 : Simpleiter addenone, 0, \

N2

>> *: [(N1_1:in Nat),(N2_1:in Nat) => (Simpleiter([(n3_2:

>> in Nat) => ((n3_2 + N1_1):in Nat)]

>> ,0,N2_1):in Nat)]

>> {move 0}

define Multzero N1 : propfixform ((N1*0)=0, \

Simpleinit addenone, 0)

>> Multzero: [(N1_1:in Nat) => ((((N1_1 * 0)

>> = 0) propfixform Simpleinit([(n3_2:in

>> Nat) => ((n3_2 + N1_1):in Nat)]

>> ,0)):that ((N1_1 * 0) = 0))]

>> {move 0}

define Multiter N1 N2 : propfixform \

((N1*Succ N2)=(N1*N2)+N1, Simpleiterstep \

addenone,0,N2)

>> Multiter: [(N1_1:in Nat),(N2_1:in Nat) =>

>> ((((N1_1 * Succ(N2_1)) = ((N1_1 * N2_1)

>> + N1_1)) propfixform Simpleiterstep([(n3_2:

>> in Nat) => ((n3_2 + N1_1):in Nat)]

67

>> ,0,N2_1)):that ((N1_1 * Succ(N2_1)) =

>> ((N1_1 * N2_1) + N1_1)))]

>> {move 0}

The development of multiplication is very similar to that of addition,
subject to the additional complication that the operation “add N1” which is
iterated has to be given a nonce name addenone (when this was first writ-
ten: we could replace it with [nn2 => nn2 + N1], but we see no compelling
reason to do so).

11 Addition is commutative

In this section, we prove from the axioms for addition given in the previous
section that addition is commutative, narrating our motivations as we go.

Lestrade execution:

open

declare M3 in Nat

>> M3: in Nat {move 2}

declare N3 in Nat

>> N3: in Nat {move 2}

define commuteswithall M3: Forall [N3 \

=> (M3 + N3) = N3 + M3] \

68

>> commuteswithall: [(M3_1:in Nat) => (---:

>> prop)]

>> {move 1}

close

Open a working environment, in which we declare a natural number M3,
and introduce the property of commuting with M3, and then the property of
M3 of commuting with every natural number.

We first show commuteswithall 0 by induction.

Lestrade execution:

comment The basis step

define zerocommuteswithzero : Reflexeq (0+0)

>> zerocommuteswithzero: [(Reflexeq((0 + 0)):

>> that ((0 + 0) = (0 + 0)))]

>> {move 0}

open

declare M3 in Nat

>> M3: in Nat {move 2}

open

69

declare indhyp that (0 + M3) = M3 + \

0

>> indhyp: that ((0 + M3) = (M3 + 0))

>> {move 3}

define commzero1 : Additer 0 M3

>> commzero1: [(---:that ((0 + Succ(M3))

>> = Succ((0 + M3))))]

>> {move 2}

define commzero2 indhyp : Substitution \

indhyp commzero1

>> commzero2: [(indhyp_1:that ((0 + M3)

>> = (M3 + 0))) => (---:that ((0 +

>> Succ(M3)) = Succ((M3 + 0))))]

>> {move 2}

define commzero3 : Addid M3

>> commzero3: [(---:that ((M3 + 0) = M3))]

>> {move 2}

define commzero4 indhyp : Substitution \

commzero3 commzero2 indhyp

>> commzero4: [(indhyp_1:that ((0 + M3)

70

>> = (M3 + 0))) => (---:that ((0 +

>> Succ(M3)) = Succ(M3)))]

>> {move 2}

declare M4 in Nat

>> M4: in Nat {move 3}

define commzero5 indhyp: Substitution0 \

([M4=>(0+Succ M3)=M4] \

,Eqsymm Addid Succ M3, \

commzero4 indhyp)

>> commzero5: [(indhyp_1:that ((0 + M3)

>> = (M3 + 0))) => (---:that ((0 +

>> Succ(M3)) = (Succ(M3) + 0)))]

>> {move 2}

close

define indstep1 M3 : Deduction commzero5

>> indstep1: [(M3_1:in Nat) => (---:that

>> (((0 + M3_1) = (M3_1 + 0)) -> ((0 +

>> Succ(M3_1)) = (Succ(M3_1) + 0))))]

>> {move 1}

close

71

define commzerobasisindstep : Ugen indstep1

>> commzerobasisindstep: [(Ugen([(M3_1:in Nat)

>> => (Deduction([(indhyp_2:that ((0 +

>> M3_1) = (M3_1 + 0))) => (Substitution0([(M4_3:

>> in Nat) => (((0 + Succ(M3_1))

>> = M4_3):prop)]

>> ,Eqsymm(Addid(Succ(M3_1))),(Addid(M3_1)

>> Substitution (indhyp_2 Substitution

>> (0 Additer M3_1)))):that ((0 + Succ(M3_1))

>> = (Succ(M3_1) + 0)))])

>> :that (((0 + M3_1) = (M3_1 + 0)) ->

>> ((0 + Succ(M3_1)) = (Succ(M3_1) + 0))))])

>> :that Forall([(M3_6:in Nat) => ((((0 +

>> M3_6) = (M3_6 + 0)) -> ((0 + Succ(M3_6))

>> = (Succ(M3_6) + 0))):prop)]))

>>]

>> {move 0}

define commzerobasis : Induction commzerobasisindstep \

zerocommuteswithzero

>> commzerobasis: [((commzerobasisindstep Induction

>> zerocommuteswithzero):that Forall([(M3_2:

>> in Nat) => (((0 + M3_2) = (M3_2 + 0)):

>> prop)]))

>>]

>> {move 0}

We have now proved the basis step (commutativity of addition with zero).
We commence the induction step.

Lestrade execution:

72

declare M3 in Nat

>> M3: in Nat {move 1}

open

declare commindhyp that commuteswithall \

M3

>> commindhyp: that commuteswithall(M3) {move

>> 2}

open

declare N3 in Nat

>> N3: in Nat {move 3}

define commind1 N3 : Reflexeq (Succ \

M3 + N3)

>> commind1: [(N3_1:in Nat) => (---:that

>> ((Succ(M3) + N3_1) = (Succ(M3) +

>> N3_1)))]

>> {move 2}

At this point we pause and remark that we immediately need the lemma
σ(m) +m = σ(m+ n). We prove the lemma inline right here.

73

Lestrade execution:

define commindlemma1 : Addid Succ M3

>> commindlemma1: [(---:that ((Succ(M3)

>> + 0) = Succ(M3)))]

>> {move 2}

declare N4 in Nat

>> N4: in Nat {move 3}

define commindlemma2: Substitution0([N4 \

=> (Succ M3 +0)= Succ \

N4] \

, Eqsymm (Addid M3),commindlemma1)

>> commindlemma2: [(---:that ((Succ(M3)

>> + 0) = Succ((M3 + 0))))]

>> {move 2}

The object commindlemma2 is evidence for the basis of the lemma.

Lestrade execution:

open

declare commindlemmaindhyp \

74

that (Succ M3 + N3) = Succ(M3 + \

N3)

>> commindlemmaindhyp: that ((Succ(M3)

>> + N3) = Succ((M3 + N3))) {move 4}

define commindlemma3 : Additer Succ \

M3 N3

>> commindlemma3: [(---:that ((Succ(M3)

>> + Succ(N3)) = Succ((Succ(M3)

>> + N3))))]

>> {move 3}

define commindlemma4 commindlemmaindhyp \

: Substitution commindlemmaindhyp \

commindlemma3

>> commindlemma4: [(commindlemmaindhyp_1:

>> that ((Succ(M3) + N3) = Succ((M3

>> + N3)))) => (---:that ((Succ(M3)

>> + Succ(N3)) = Succ(Succ((M3 +

>> N3)))))]

>> {move 3}

define commindlemma5 commindlemmaindhyp \

: Substitution (Eqsymm(Additer \

M3 N3), commindlemma4 \

commindlemmaindhyp)

>> commindlemma5: [(commindlemmaindhyp_1:

>> that ((Succ(M3) + N3) = Succ((M3

75

>> + N3)))) => (---:that ((Succ(M3)

>> + Succ(N3)) = Succ((M3 + Succ(N3)))))]

>> {move 3}

close

define commindlemma6 N3 : Deduction \

(commindlemma5)

>> commindlemma6: [(N3_1:in Nat) => (---:

>> that (((Succ(M3) + N3_1) = Succ((M3

>> + N3_1))) -> ((Succ(M3) + Succ(N3_1))

>> = Succ((M3 + Succ(N3_1))))))]

>> {move 2}

define commindlemma7 : Ugen commindlemma6

>> commindlemma7: [(---:that Forall([(N3_2:

>> in Nat) => ((((Succ(M3) + N3_2)

>> = Succ((M3 + N3_2))) -> ((Succ(M3)

>> + Succ(N3_2)) = Succ((M3 + Succ(N3_2))))):

>> prop)]))

>>]

>> {move 2}

define commindlemma : Induction commindlemma7, \

commindlemma2

>> commindlemma: [(---:that Forall([(N3_2:

>> in Nat) => (((Succ(M3) + N3_2)

>> = Succ((M3 + N3_2))):prop)]))

76

>>]

>> {move 2}

declare M4 in Nat

>> M4: in Nat {move 3}

define commind2 N3 : Substitution0([\

M4 => (Succ M3 + N3)=M4] \

, Uinst commindlemma N3, \

commind1 N3)

>> commind2: [(N3_1:in Nat) => (---:that

>> ((Succ(M3) + N3_1) = Succ((M3 +

>> N3_1))))]

>> {move 2}

define commind3 N3 : Substitution(Uinst \

commindhyp N3,commind2 N3)

>> commind3: [(N3_1:in Nat) => (---:that

>> ((Succ(M3) + N3_1) = Succ((N3_1

>> + M3))))]

>> {move 2}

define commind4 N3 : Substitution(Eqsymm(Additer \

N3 M3),commind3 N3)

>> commind4: [(N3_1:in Nat) => (---:that

>> ((Succ(M3) + N3_1) = (N3_1 + Succ(M3))))]

77

>> {move 2}

close

define commind5 commindhyp : propfixform(commuteswithall \

(Succ M3), Ugen commind4)

>> commind5: [(commindhyp_1:that commuteswithall(M3))

>> => (---:that commuteswithall(Succ(M3)))]

>> {move 1}

close

define commind6 M3:Deduction commind5

>> commind6: [(M3_1:in Nat) => (Deduction([(commindhyp_4:

>> that Forall([(N3_5:in Nat) => (((M3_1

>> + N3_5) = (N3_5 + M3_1)):prop)]))

>> => ((Forall([(N3_6:in Nat) => (((Succ(M3_1)

>> + N3_6) = (N3_6 + Succ(M3_1))):prop)])

>> propfixform Ugen([(N3_8:in Nat) =>

>> ((Eqsymm((N3_8 Additer M3_1)) Substitution

>> ((commindhyp_4 Uinst N3_8) Substitution

>> Substitution0([(M4_12:in Nat) =>

>> (((Succ(M3_1) + N3_8) = M4_12):

>> prop)]

>> ,((Ugen([(N3_16:in Nat) => (Deduction([(commindlemmaindhyp_17:

>> that ((Succ(M3_1) + N3_16)

>> = Succ((M3_1 + N3_16)))) =>

>> ((Eqsymm((M3_1 Additer N3_16))

>> Substitution (commindlemmaindhyp_17

>> Substitution (Succ(M3_1) Additer

>> N3_16))):that ((Succ(M3_1)

>> + Succ(N3_16)) = Succ((M3_1

78

>> + Succ(N3_16)))))])

>> :that (((Succ(M3_1) + N3_16)

>> = Succ((M3_1 + N3_16))) -> ((Succ(M3_1)

>> + Succ(N3_16)) = Succ((M3_1 +

>> Succ(N3_16))))))])

>> Induction Substitution0([(N4_20:

>> in Nat) => (((Succ(M3_1) + 0)

>> = Succ(N4_20)):prop)]

>> ,Eqsymm(Addid(M3_1)),Addid(Succ(M3_1))))

>> Uinst N3_8),Reflexeq((Succ(M3_1)

>> + N3_8))))):that ((Succ(M3_1) +

>> N3_8) = (N3_8 + Succ(M3_1))))]))

>> :that Forall([(N3_21:in Nat) => (((Succ(M3_1)

>> + N3_21) = (N3_21 + Succ(M3_1))):

>> prop)]))

>>])

>> :that (Forall([(N3_22:in Nat) => (((M3_1

>> + N3_22) = (N3_22 + M3_1)):prop)])

>> -> Forall([(N3_23:in Nat) => (((Succ(M3_1)

>> + N3_23) = (N3_23 + Succ(M3_1))):prop)]))

>>)]

>> {move 0}

define commind7 : Ugen commind6

>> commind7: [(Ugen(commind6):that Forall([(M3_4:

>> in Nat) => ((Forall([(N3_5:in Nat)

>> => (((M3_4 + N3_5) = (N3_5 + M3_4)):

>> prop)])

>> -> Forall([(N3_6:in Nat) => (((Succ(M3_4)

>> + N3_6) = (N3_6 + Succ(M3_4))):prop)]))

>> :prop)]))

>>]

>> {move 0}

79

define Addcomm : Induction commind7 commzerobasis

>> Addcomm: [((commind7 Induction commzerobasis):

>> that Forall([(M3_3:in Nat) => (Forall([(N3_4:

>> in Nat) => (((M3_3 + N3_4) = (N3_4

>> + M3_3)):prop)])

>> :prop)]))

>>]

>> {move 0}

declare term1 in Nat

>> term1: in Nat {move 1}

declare term2 in Nat

>> term2: in Nat {move 1}

define Addcomm2 term1 term2 : Uinst(Uinst \

Addcomm term1,term2)

>> Addcomm2: [(term1_1:in Nat),(term2_1:in Nat)

>> => (((Addcomm Uinst term1_1) Uinst term2_1):

>> that ((term1_1 + term2_1) = (term2_1 +

>> term1_1)))]

>> {move 0}

At this point the commutativity of addition is proved. The method of

80

proof is entirely standard. Moreover, it is not nearly as verbose as the length
of the text above would seem to suggest: the correct measure is the length
of the text consisting only of user-entered lines. These lines are closely anal-
ogous to the lines in a usual proof of this result from the axioms of Peano
arithmetic, complicated by a fine-grained approach to application of rules
and careful notation of dependencies and levels of hypothesis.

We shall probably clean up this proof, with attention to better use of
namespace and better mnemonics for proof line objects.

12 Power set types introduced

Lestrade execution:

postulate setsof T: type

>> setsof: [(T_1:type) => (---:type)]

>> {move 0}

postulate setof tpred: in setsof T

>> setof: [(.T_1:type),(tpred_1:[(tt1_2:in .T_1)

>> => (---:prop)])

>> => (---:in setsof(.T_1))]

>> {move 0}

A more usual notation for setsof T might be P(T), the “power set type”
of T . The terminology here relates to the conceptual abuse confusing a type
T with the set of its elements. The more usual mathematical notation for
setof tpred would be {x ∈ T : tpred(x)}, subject to the same remark
about abuse of terminology for types and sets.

Lestrade execution:

81

declare t6 in T

>> t6: in T {move 1}

declare s6 in setsof T

>> s6: in setsof(T) {move 1}

postulate E t6 s6 : prop

>> E: [(.T_1:type),(t6_1:in .T_1),(s6_1:in setsof(.T_1))

>> => (---:prop)]

>> {move 0}

We declare the membership relation.

Lestrade execution:

declare elementev1 that tpred t6

>> elementev1: that tpred(t6) {move 1}

declare elementev2 that t6 E setof tpred

>> elementev2: that (t6 E setof(tpred)) {move

>> 1}

82

postulate Comprehension10 tpred, t6 elementev1 \

that t6 E setof tpred

>> Comprehension10: [(.T_1:type),(tpred_1:[(tt1_2:

>> in .T_1) => (---:prop)]),

>> (t6_1:in .T_1),(elementev1_1:that tpred_1(t6_1))

>> => (---:that (t6_1 E setof(tpred_1)))]

>> {move 0}

define Comprehension11 tpred, elementev1 \

: Comprehension10 tpred, t6 elementev1

>> Comprehension11: [(.T_1:type),(tpred_1:[(tt1_2:

>> in .T_1) => (---:prop)]),

>> (.t6_1:in .T_1),(elementev1_1:that tpred_1(.t6_1))

>> => (Comprehension10(tpred_1,.t6_1,elementev1_1):

>> that (.t6_1 E setof(tpred_1)))]

>> {move 0}

define Comprehension12 t6 elementev1 : Comprehension10 \

tpred, t6 elementev1

>> Comprehension12: [(.T_1:type),(t6_1:in .T_1),

>> (.tpred_1:[(tt1_2:in .T_1) => (---:prop)]),

>> (elementev1_1:that .tpred_1(t6_1)) =>

>> (Comprehension10(.tpred_1,t6_1,elementev1_1):

>> that (t6_1 E setof(.tpred_1)))]

>> {move 0}

postulate Comprehension2 elementev2 that \

83

tpred t6

>> Comprehension2: [(.T_1:type),(.t6_1:in .T_1),

>> (.tpred_1:[(tt1_2:in .T_1) => (---:prop)]),

>> (elementev2_1:that (.t6_1 E setof(.tpred_1)))

>> => (---:that .tpred_1(.t6_1))]

>> {move 0}

We implement the comprehension axiom, the equivalence of

a ∈ {x ∈ T : tpred(x)}

and tpred(a), via the declaration of the functions Comprehension1x (where
x is 0,1,2) and Comprehension2.

Lestrade execution:

open

declare t5 in T

>> t5: in T {move 2}

postulate tpred1 t5 prop

>> tpred1: [(t5_1:in T) => (---:prop)]

>> {move 1}

postulate tpred2 t5 prop

>> tpred2: [(t5_1:in T) => (---:prop)]

>> {move 1}

84

declare tpredev1 that tpred1 t5

>> tpredev1: that tpred1(t5) {move 2}

declare tpredev2 that tpred1 t5

>> tpredev2: that tpred1(t5) {move 2}

postulate ext1 tpredev1 : that tpred2 \

t5

>> ext1: [(.t5_1:in T),(tpredev1_1:that tpred1(.t5_1))

>> => (---:that tpred2(.t5_1))]

>> {move 1}

postulate ext2 tpredev2 : that tpred1 \

t5

>> ext2: [(.t5_1:in T),(tpredev2_1:that tpred1(.t5_1))

>> => (---:that tpred1(.t5_1))]

>> {move 1}

close

postulate Extensionality ext1, ext2 : \

that (setof tpred1) = setof tpred2

85

>> Extensionality: [(.T_1:type),(.tpred1_1:[(t5_2:

>> in .T_1) => (---:prop)]),

>> (.tpred2_1:[(t5_3:in .T_1) => (---:prop)]),

>> (ext1_1:[(.t5_4:in .T_1),(tpredev1_4:that

>> .tpred1_1(.t5_4)) => (---:that .tpred2_1(.t5_4))]),

>> (ext2_1:[(.t5_5:in .T_1),(tpredev2_5:that

>> .tpred1_1(.t5_5)) => (---:that .tpred1_1(.t5_5))])

>> => (---:that (setof(.tpred1_1) = setof(.tpred2_1)))]

>> {move 0}

declare s7 in setsof T

>> s7: in setsof(T) {move 1}

declare t5 in T

>> t5: in T {move 1}

postulate Extensionality2 s7 that s7 = setof \

[t5 => t5 E s7] \

>> Extensionality2: [(.T_1:type),(s7_1:in setsof(.T_1))

>> => (---:that (s7_1 = setof([(t5_2:in .T_1)

>> => ((t5_2 E s7_1):prop)]))

>>)]

>> {move 0}

86

The functions Extensionality1 and Extensionality2 implement the
axiom of extensionality. There is something to note about how this is done
(and we ought to prove some theorems later to show equivalence of this
approach to other possible approaches). In effect, we postulate equivalence of
{x ∈ T : tpred(x)} = {x ∈ T : tpred(x)} and (∀x : tpred(x)↔ tpred(x)):
this is what Extensionality1 does. To get full extensionality in the usual
sense, we also postulate S = {x ∈ T : x ∈ S} (this is what Extensionality2
does): for each S of type P(T): this prevents existence of additional objects
of type P(T) with the same extension as sets defined in the usual way using
set builder notation from predicates, but not themselves defined using set
builder notation.

We have a philosophical reason for taking this approach. We have general
metaphysical reasons for avoiding conflation of functions and objects, on
which we may expand later. The function setof enables implementation
of predicates of objects of type T (functions from T to prop) as objects of
type P(T): Extensionality1 thus expresses identity criteria for predicates
(indirectly). It can be further noted that it is perfectly possible to define
an equality predicate directly on the function sort of predicates of type T
objects, and explicitly state extensional identity criteria for such functions,
and we may do this later. But in any event, we regard the assertion of
identity criteria for predicates implemented as objects of a power set type
as distinguishable from the assertion that all objects of the power set type
actually are implementations of predicates.

A theory of sets as untyped mathematical objects (in sort obj) could be
implemented similarly, and we may present this later.

13 Naive set theory and Russell’s paradox

(without even using negation!)

In this section we develop naive set theory (in which any property of untyped
mathematical objects defines a set, and sets are untyped mathematical ob-
jects) and develop something like the paradox of Russell. The way in which
we do this is a little strange since we do not have negation yet, but impli-
cation is enough: the function Russell which is our final product takes any
proposition A and returns a proof of A: the existence of a such a function
would at the very least make mathematics uninteresting.

87

Lestrade execution:

open

declare A1 prop

>> A1: prop {move 2}

declare ao obj

>> ao: obj {move 2}

declare bo obj

>> bo: obj {move 2}

open

declare xo obj

>> xo: obj {move 3}

postulate opred xo prop

>> opred: [(xo_1:obj) => (---:prop)]

>> {move 2}

88

close

postulate osetof opred obj

>> osetof: [(opred_1:[(xo_2:obj) => (---:

>> prop)])

>> => (---:obj)]

>> {move 1}

We introduce the set builder operation osetof which takes a predicate
of untyped objects to an untyped object.

Lestrade execution:

postulate Eo ao bo prop

>> Eo: [(ao_1:obj),(bo_1:obj) => (---:prop)]

>> {move 1}

declare oelementev1 that ao Eo osetof \

opred

>> oelementev1: that (ao Eo osetof(opred))

>> {move 2}

declare oelementev2 that opred ao

>> oelementev2: that opred(ao) {move 2}

89

postulate Ocomp1 oelementev1 that opred \

ao

>> Ocomp1: [(.ao_1:obj),(.opred_1:[(xo_2:

>> obj) => (---:prop)]),

>> (oelementev1_1:that (.ao_1 Eo osetof(.opred_1)))

>> => (---:that .opred_1(.ao_1))]

>> {move 1}

postulate Ocomp2 ao opred, oelementev2 \

that ao Eo osetof opred

>> Ocomp2: [(ao_1:obj),(opred_1:[(xo_2:obj)

>> => (---:prop)]),

>> (oelementev2_1:that opred_1(ao_1))

>> => (---:that (ao_1 Eo osetof(opred_1)))]

>> {move 1}

We introduce the membership relation Eo and the two functions imple-
menting its comprehension axiom, which are precisely analogous to the func-
tions implementing the comprehension scheme in typed set theory above.

Lestrade execution:

open

declare yo obj

>> yo: obj {move 3}

define R yo : (yo Eo yo) -> A1

90

>> R: [(yo_1:obj) => (---:prop)]

>> {move 2}

close

define r A1 : osetof R

>> r: [(A1_1:prop) => (---:obj)]

>> {move 1}

This is our paradoxical set r(A1) , which we would write in ordinary
notation as {x : x ∈ x→ A1}.

Lestrade execution:

open

declare rhyp that (r A1) Eo r A1

>> rhyp: that (r(A1) Eo r(A1)) {move 3}

define rstep1 rhyp: Ocomp1 rhyp

>> rstep1: [(rhyp_1:that (r(A1) Eo r(A1)))

>> => (---:that ((r(A1) Eo r(A1)) ->

>> A1))]

>> {move 2}

91

define rstep2 rhyp: Mp rhyp (rstep1 \

rhyp)

>> rstep2: [(rhyp_1:that (r(A1) Eo r(A1)))

>> => (---:that A1)]

>> {move 2}

define rstep3 rhyp: Deduction rstep2

>> rstep3: [(rhyp_1:that (r(A1) Eo r(A1)))

>> => (---:that ((r(A1) Eo r(A1)) ->

>> A1))]

>> {move 2}

define rstep4 rhyp: Mp rhyp rstep3 \

rhyp

>> rstep4: [(rhyp_1:that (r(A1) Eo r(A1)))

>> => (---:that A1)]

>> {move 2}

close

define Russell1 A1 : Deduction rstep4

>> Russell1: [(A1_1:prop) => (---:that ((r(A1_1)

>> Eo r(A1_1)) -> A1_1))]

>> {move 1}

92

define Ocomp22 ao oelementev2 : Ocomp2 \

ao opred, oelementev2

>> Ocomp22: [(ao_1:obj),(.opred_1:[(xo_2:

>> obj) => (---:prop)]),

>> (oelementev2_1:that .opred_1(ao_1))

>> => (---:that (ao_1 Eo osetof(.opred_1)))]

>> {move 1}

define Russell2 A1: propfixform ((r A1) \

Eo (r A1),Ocomp22 ((r A1),(Russell1 A1)))

>> Russell2: [(A1_1:prop) => (---:that (r(A1_1)

>> Eo r(A1_1)))]

>> {move 1}

define Russell A1: Mp (Russell2 A1, Russell1 \

A1)

>> Russell: [(A1_1:prop) => (---:that A1_1)]

>> {move 1}

close

The argument here is perfectly mad, of course. We review it since this is
not the form usually given.

Let R denote the set {x : x ∈ x→ A}.
Our goal is to prove R ∈ R. To prove R ∈ R, that is R ∈ {x ∈ x→ A},

it suffices to prove R ∈ R→ A.
Suppose R ∈ R for the sake of argument. Our goal is A. R ∈ R as already

93

noted is equivalent to R ∈ R → A. Modus ponens gives us our goal A, so
we have established R ∈ R → A by deduction, and so we have established
R ∈ R, as already discussed.

Since we have both R ∈ R and R ∈ R→ A, we have A by modus ponens.
But A was any proposition at all.
A Lestrade technicality to note is that it was convenient to introduce a

version Ocomp22 of Ocomp2 which did not take an explicit predicate argument.
One should always have something philosophical to say after introducing

something reputed to be a paradox, a threat to the foundations of reason.
Our remark is that one should look carefully at the hypotheses before con-
cluding that the foundations of reason are threatened. The Lestrade frame-
work does nothing to encourage us to think it likely that the function sort
of predicates of objects of sort obj can be embedded into the sort obj it-
self. The proof simply shows that this cannot be done (in the presence of
implication, at any rate).

The observant reader may notice that we packed the whole preceding
argument in an extra Lestrade environment, so that we do not actually have
primitives at move 0 which allow us to deduce that any proposition A is true.
What we can prove at move 0 we now unveil (if objects with types of the
primitives in the development above exist, contradiction follows). It is also
a frightening example of the effects of definition unpacking!

Lestrade execution:

define Russellthm A,osetof, Eo, Ocomp1, Ocomp2: \

Russell A

>> Russellthm: [(A_1:prop),(osetof_1:[(opred_2:

>> [(xo_3:obj) => (---:prop)])

>> => (---:obj)]),

>> (Eo_1:[(ao_4:obj),(bo_4:obj) => (---:prop)]),

>> (Ocomp1_1:[(.ao_5:obj),(.opred_5:[(xo_6:

>> obj) => (---:prop)]),

>> (oelementev1_5:that (.ao_5 Eo_1 osetof_1(.opred_5)))

>> => (---:that .opred_5(.ao_5))]),

>> (Ocomp2_1:[(ao_7:obj),(opred_7:[(xo_8:

>> obj) => (---:prop)]),

94

>> (oelementev2_7:that opred_7(ao_7))

>> => (---:that (ao_7 Eo_1 osetof_1(opred_7)))])

>> => ((((osetof_1([(yo_11:obj) => (((yo_11

>> Eo_1 yo_11) -> A_1):prop)])

>> Eo_1 osetof_1([(yo_12:obj) => (((yo_12

>> Eo_1 yo_12) -> A_1):prop)]))

>> propfixform Ocomp2_1(osetof_1([(yo_13:

>> obj) => (((yo_13 Eo_1 yo_13) -> A_1):

>> prop)]),

>> [(xo_14:obj) => (((xo_14 Eo_1 xo_14) ->

>> A_1):prop)]

>> ,Deduction([(rhyp_17:that (osetof_1([(yo_18:

>> obj) => (((yo_18 Eo_1 yo_18) ->

>> A_1):prop)])

>> Eo_1 osetof_1([(yo_19:obj) => (((yo_19

>> Eo_1 yo_19) -> A_1):prop)]))

>>) => ((rhyp_17 Mp Deduction([(rhyp_24:

>> that (osetof_1([(yo_25:obj) => (((yo_25

>> Eo_1 yo_25) -> A_1):prop)])

>> Eo_1 osetof_1([(yo_26:obj) => (((yo_26

>> Eo_1 yo_26) -> A_1):prop)]))

>>) => ((rhyp_24 Mp Ocomp1_1(osetof_1([(yo_29:

>> obj) => (((yo_29 Eo_1 yo_29)

>> -> A_1):prop)]),

>> [(yo_30:obj) => (((yo_30 Eo_1 yo_30)

>> -> A_1):prop)]

>> ,rhyp_24)):that A_1)]))

>> :that A_1)]))

>>) Mp Deduction([(rhyp_33:that (osetof_1([(yo_34:

>> obj) => (((yo_34 Eo_1 yo_34) ->

>> A_1):prop)])

>> Eo_1 osetof_1([(yo_35:obj) => (((yo_35

>> Eo_1 yo_35) -> A_1):prop)]))

>>) => ((rhyp_33 Mp Deduction([(rhyp_40:

>> that (osetof_1([(yo_41:obj) => (((yo_41

>> Eo_1 yo_41) -> A_1):prop)])

>> Eo_1 osetof_1([(yo_42:obj) => (((yo_42

>> Eo_1 yo_42) -> A_1):prop)]))

95

>>) => ((rhyp_40 Mp Ocomp1_1(osetof_1([(yo_45:

>> obj) => (((yo_45 Eo_1 yo_45)

>> -> A_1):prop)]),

>> [(yo_46:obj) => (((yo_46 Eo_1 yo_46)

>> -> A_1):prop)]

>> ,rhyp_40)):that A_1)]))

>> :that A_1)]))

>> :that A_1)]

>> {move 0}

14 Constructive forms of negation, disjunc-

tion, and the existential quantifier

We resume the development of logical primitives. Here we give the construc-
tive rules for negation, disjunction and existential quantification.

Lestrade execution:

postulate ?? prop

>> ??: prop {move 0}

declare absurd that ??

>> absurd: that ?? {move 1}

declare Dd prop

>> Dd: prop {move 1}

96

postulate Panic absurd Dd that Dd

>> Panic: [(absurd_1:that ??),(Dd_1:prop) =>

>> (---:that Dd_1)]

>> {move 0}

We introduce the false statement ?? (typeset notation for this is ⊥)
and introduce the rule that any proposition may be deduced from a false
statement.

Lestrade execution:

define ~ Dd : Dd -> ??

>> ~: [(Dd_1:prop) => ((Dd_1 -> ??):prop)]

>> {move 0}

We define negation.

Lestrade execution:

postulate v A B prop

>> v: [(A_1:prop),(B_1:prop) => (---:prop)]

>> {move 0}

postulate Addition1 B aa that A v B

97

>> Addition1: [(B_1:prop),(.A_1:prop),(aa_1:

>> that .A_1) => (---:that (.A_1 v B_1))]

>> {move 0}

postulate Addition2 A bb that A v B

>> Addition2: [(A_1:prop),(.B_1:prop),(bb_1:

>> that .B_1) => (---:that (A_1 v .B_1))]

>> {move 0}

declare cases that A v B

>> cases: that (A v B) {move 1}

open

declare aa1 that A

>> aa1: that A {move 2}

declare bb1 that B

>> bb1: that B {move 2}

postulate case1 aa1 that Dd

>> case1: [(aa1_1:that A) => (---:that Dd)]

>> {move 1}

98

postulate case2 bb1 that Dd

>> case2: [(bb1_1:that B) => (---:that Dd)]

>> {move 1}

close

postulate Cases cases, case1, case2 that \

Dd

>> Cases: [(.A_1:prop),(.B_1:prop),(cases_1:

>> that (.A_1 v .B_1)),(.Dd_1:prop),(case1_1:

>> [(aa1_2:that .A_1) => (---:that .Dd_1)]),

>> (case2_1:[(bb1_3:that .B_1) => (---:that

>> .Dd_1)])

>> => (---:that .Dd_1)]

>> {move 0}

We introduce disjunction and its basic rules, addition and proof by cases.

Lestrade execution:

postulate Exists tpred prop

>> Exists: [(.T_1:type),(tpred_1:[(tt1_2:in

>> .T_1) => (---:prop)])

>> => (---:prop)]

>> {move 0}

99

declare existsev that tpred t

>> existsev: that tpred(t) {move 1}

postulate Egen0 tpred, t existsev : that \

Exists tpred

>> Egen0: [(.T_1:type),(tpred_1:[(tt1_2:in .T_1)

>> => (---:prop)]),

>> (t_1:in .T_1),(existsev_1:that tpred_1(t_1))

>> => (---:that Exists(tpred_1))]

>> {move 0}

define Egen1 t existsev : Egen0 tpred, t \

existsev

>> Egen1: [(.T_1:type),(t_1:in .T_1),(.tpred_1:

>> [(tt1_2:in .T_1) => (---:prop)]),

>> (existsev_1:that .tpred_1(t_1)) => (Egen0(.tpred_1,

>> t_1,existsev_1):that Exists(.tpred_1))]

>> {move 0}

define Egen2 tpred, existsev : Egen0 tpred, \

t existsev

>> Egen2: [(.T_1:type),(tpred_1:[(tt1_2:in .T_1)

>> => (---:prop)]),

>> (.t_1:in .T_1),(existsev_1:that tpred_1(.t_1))

>> => (Egen0(tpred_1,.t_1,existsev_1):that

>> Exists(tpred_1))]

>> {move 0}

100

declare existsev2 that Exists tpred

>> existsev2: that Exists(tpred) {move 1}

declare witness in T

>> witness: in T {move 1}

declare witnessev that tpred witness

>> witnessev: that tpred(witness) {move 1}

declare witnessprf [witness,witnessev => \

that Dd] \

>> witnessprf: [(witness_1:in T),(witnessev_1:

>> that tpred(witness_1)) => (---:that Dd)]

>> {move 1}

postulate Einst existsev2, witnessprf that \

Dd

>> Einst: [(.T_1:type),(.tpred_1:[(tt1_2:in

>> .T_1) => (---:prop)]),

101

>> (existsev2_1:that Exists(.tpred_1)),(.Dd_1:

>> prop),(witnessprf_1:[(witness_3:in .T_1),

>> (witnessev_3:that .tpred_1(witness_3))

>> => (---:that .Dd_1)])

>> => (---:that .Dd_1)]

>> {move 0}

We introduce the existential quantifier and its basic rules. At this point
we have introduced all operations and rules of constructive (intuitionist)
logic.

Note that three different additional versions of existential instantiation
with different choices of explicit arguments are given.

15 Classical logic completed with double nega-

tion. Proofs of some classical theorems.

Lestrade execution:

declare maybe that ~ ~ A

>> maybe: that ~(~(A)) {move 1}

postulate Dneg maybe that A

>> Dneg: [(.A_1:prop),(maybe_1:that ~(~(.A_1)))

>> => (---:that .A_1)]

>> {move 0}

open

102

declare nega1 that ~Dd

>> nega1: that ~(Dd) {move 2}

define howler nega1 :absurd

>> howler: [(nega1_1:that ~(Dd)) => (---:

>> that ??)]

>> {move 1}

close

define Panic0 absurd Dd: Dneg(Deduction howler)

>> Panic0: [(absurd_1:that ??),(Dd_1:prop) =>

>> (Dneg(Deduction([(nega1_2:that ~(Dd_1))

>> => (absurd_1:that ??)]))

>> :that Dd_1)]

>> {move 0}

We introduce the rule of double negation ¬¬P ` P , and we show that
the constructive rule Panic can be implemented using Dneg.

What follows below is the full proof of the classically valid equivalence
of ¬A → B and A ∨ B, which we ought to comment line by line with a
parallel proof in English. Notice how indentation in Lestrade output signals
the depth of the nest of environments one is working in.

Lestrade execution:

open

103

declare side1 that (~A) -> B

>> side1: that (~(A) -> B) {move 2}

Suppose that ¬A→ B. Our aim is to prove A ∨B.

Lestrade execution:

open

declare contrahyp that ~(A v B)

>> contrahyp: that ~((A v B)) {move 3}

Our strategy for proving A ∨ B is to suppose ¬(A ∨ B) and reason to a
contradiction.

Lestrade execution:

open

declare howabouta that A

>> howabouta: that A {move 4}

define noa1 howabouta : Mp (Addition1 \

B howabouta,contrahyp)

>> noa1: [(howabouta_1:that A) => (---:

104

>> that ??)]

>> {move 3}

close

define thusnota contrahyp: propfixform(~A, \

Deduction noa1)

>> thusnota: [(contrahyp_1:that ~((A v

>> B))) => (---:that ~(A))]

>> {move 2}

In the block of text above we prove ¬A from the local hypotheses. The
strategy is to suppose that A, deduce A∨B from this by the rule of addition,
then note the contradiction with the assumption ¬(A ∨ B) made above. To
follow this, it is useful to recall that the deduction of a contradiction when
we have both X and ¬X is actually an instance of modus ponens , since ¬X
is defined as X →⊥.

Lestrade execution:

define thusb contrahyp: Mp (thusnota \

contrahyp,side1)

>> thusb: [(contrahyp_1:that ~((A v B)))

>> => (---:that B)]

>> {move 2}

define thusaorb contrahyp: Addition2 \

A thusb contrahyp

105

>> thusaorb: [(contrahyp_1:that ~((A v

>> B))) => (---:that (A v B))]

>> {move 2}

define thuscontra1 contrahyp: Mp (thusaorb \

contrahyp,contrahyp)

>> thuscontra1: [(contrahyp_1:that ~((A

>> v B))) => (---:that ??)]

>> {move 2}

In the three lines above we deduce a contradiction: we first deduce B by
modus ponens from previous lines ¬A and ¬A→ B, then we deduce A ∨ B
from B by the rule of addition, then we obtain a contradiction.

Lestrade execution:

close

define classicalor1 side1 : Dneg(Deduction \

thuscontra1)

>> classicalor1: [(side1_1:that (~(A) ->

>> B)) => (---:that (A v B))]

>> {move 1}

Applying Deduction to the function thuscontra1 above gives a proof
that ¬¬(A ∨ B). Applying Dneg to this gives a proof of A ∨ B. What we
have actually done is constructed a function from the original assumption
that ¬A→ B to evidence that A ∨B.

Lestrade execution:

106

declare side2 that A v B

>> side2: that (A v B) {move 2}

Now we assume that A ∨B and argue to the conclusion ¬A→ B.

Lestrade execution:

open

declare ahyp1 that ~A

>> ahyp1: that ~(A) {move 3}

We assume ¬A and our goal is now B. Our strategy is to prove this by
cases on our hypothesis A ∨ B, first showing that B follows from A, then
showing that B follows from B.

Lestrade execution:

open

declare ifa2 that A

>> ifa2: that A {move 4}

define ifa21 ifa2 : Mp ifa2 ahyp1

107

>> ifa21: [(ifa2_1:that A) => (---:

>> that ??)]

>> {move 3}

define ifa22 ifa2 : Panic (ifa21 \

ifa2,B)

>> ifa22: [(ifa2_1:that A) => (---:

>> that B)]

>> {move 3}

A function from proofs of A to proofs of B is defined: from a proof of A
we get a proof of ⊥ because we have a constant proof of ¬A given. From a
proof of ⊥ we get a proof of anything, in particular B.

Lestrade execution:

declare ifb2 that B

>> ifb2: that B {move 4}

define ifb21 ifb2 : ifb2

>> ifb21: [(ifb2_1:that B) => (---:

>> that B)]

>> {move 3}

The identity function takes proofs of B to proofs of B.

108

Lestrade execution:

close

define thusb2 ahyp1 : Cases side2, \

ifa22, ifb21

>> thusb2: [(ahyp1_1:that ~(A)) => (---:

>> that B)]

>> {move 2}

We complete the proof of the conclusion B from the hypothesis ¬A by
cases outlined above.

Lestrade execution:

close

define classicalor2 side2 : Deduction \

thusb2

>> classicalor2: [(side2_1:that (A v B))

>> => (---:that (~(A) -> B))]

>> {move 1}

close

define Classicalor1 A B : Deduction classicalor1

>> Classicalor1: [(A_1:prop),(B_1:prop) => (Deduction([(side1_2:

>> that (~(A_1) -> B_1)) => (Dneg(Deduction([(contrahyp_3:

109

>> that ~((A_1 v B_1))) => (((A_1 Addition2

>> ((~(A_1) propfixform Deduction([(howabouta_4:

>> that A_1) => (((B_1 Addition1

>> howabouta_4) Mp contrahyp_3):

>> that ??)]))

>> Mp side1_2)) Mp contrahyp_3):that

>> ??)]))

>> :that (A_1 v B_1))])

>> :that ((~(A_1) -> B_1) -> (A_1 v B_1)))]

>> {move 0}

define Classicalor2 A B : Deduction classicalor2

>> Classicalor2: [(A_1:prop),(B_1:prop) => (Deduction([(side2_2:

>> that (A_1 v B_1)) => (Deduction([(ahyp1_3:

>> that ~(A_1)) => (Cases(side2_2,[(ifa2_4:

>> that A_1) => (((ifa2_4 Mp ahyp1_3)

>> Panic B_1):that B_1)]

>> ,[(ifb2_5:that B_1) => (ifb2_5:that

>> B_1)])

>> :that B_1)])

>> :that (~(A_1) -> B_1))])

>> :that ((A_1 v B_1) -> (~(A_1) -> B_1)))]

>> {move 0}

define Classicalor A B: propfixform \

(((~A)->B)<->(A v B), Andproof (Classicalor1 \

A B,Classicalor2 A B))

>> Classicalor: [(A_1:prop),(B_1:prop) => ((((~(A_1)

>> -> B_1) <-> (A_1 v B_1)) propfixform ((A_1

>> Classicalor1 B_1) Andproof (A_1 Classicalor2

>> B_1))):that ((~(A_1) -> B_1) <-> (A_1

110

>> v B_1)))]

>> {move 0}

Finally we exit to the outermost environment and prove our three theo-
rems, two conditionals and a biconditional. The conditionals are proved by
applying Deduction to the appropriate functions developed above, and the
biconditional is proved using Andproof.

The following block of so far uncommented text proves the equivalence
of ¬(A→ B) and A ∧ ¬B in the same style.

Lestrade execution:

open

declare side1 that ~(A -> B)

>> side1: that ~((A -> B)) {move 2}

open

declare nota that ~A

>> nota: that ~(A) {move 3}

open

declare buta that A

>> buta: that A {move 4}

111

define step10 buta : Mp buta nota

>> step10: [(buta_1:that A) => (---:

>> that ??)]

>> {move 3}

define step20 buta : Panic (step10 \

buta, B)

>> step20: [(buta_1:that A) => (---:

>> that B)]

>> {move 3}

close

define athenb nota : Deduction step20

>> athenb: [(nota_1:that ~(A)) => (---:

>> that (A -> B))]

>> {move 2}

define iscontra nota : Mp (athenb nota, \

side1)

>> iscontra: [(nota_1:that ~(A)) => (---:

>> that ??)]

>> {move 2}

112

close

define yesa side1 : Dneg(Deduction iscontra)

>> yesa: [(side1_1:that ~((A -> B))) => (---:

>> that A)]

>> {move 1}

open

declare butb that B

>> butb: that B {move 3}

open

declare supposea that A

>> supposea: that A {move 4}

define indeedb supposea : butb

>> indeedb: [(supposea_1:that A) =>

>> (---:that B)]

>> {move 3}

close

113

define ahenceb butb : Deduction indeedb

>> ahenceb: [(butb_1:that B) => (---:that

>> (A -> B))]

>> {move 2}

define iscontra2 butb : Mp (ahenceb \

butb,side1)

>> iscontra2: [(butb_1:that B) => (---:

>> that ??)]

>> {move 2}

close

define notob side1 : propfixform(~B,Deduction \

iscontra2)

>> notob: [(side1_1:that ~((A -> B))) =>

>> (---:that ~(B))]

>> {move 1}

define negimp1 side1 : Andproof(yesa side1, \

notob side1)

>> negimp1: [(side1_1:that ~((A -> B))) =>

>> (---:that (A & ~(B)))]

>> {move 1}

114

declare side2 that A & ~B

>> side2: that (A & ~(B)) {move 2}

open

declare ifathenb that A -> B

>> ifathenb: that (A -> B) {move 3}

define step11 ifathenb : Mp(Simplification1 \

side2,ifathenb)

>> step11: [(ifathenb_1:that (A -> B))

>> => (---:that B)]

>> {move 2}

define step21 ifathenb : Mp(step11 \

ifathenb,Simplification2 side2)

>> step21: [(ifathenb_1:that (A -> B))

>> => (---:that ??)]

>> {move 2}

close

define negimp2 side2: propfixform(~(A \

-> B),Deduction step21)

>> negimp2: [(side2_1:that (A & ~(B))) =>

115

>> (---:that ~((A -> B)))]

>> {move 1}

close

define Negimp1 A B : Deduction negimp1

>> Negimp1: [(A_1:prop),(B_1:prop) => (Deduction([(side1_2:

>> that ~((A_1 -> B_1))) => ((Dneg(Deduction([(nota_3:

>> that ~(A_1)) => ((Deduction([(buta_4:

>> that A_1) => (((buta_4 Mp nota_3)

>> Panic B_1):that B_1)])

>> Mp side1_2):that ??)]))

>> Andproof (~(B_1) propfixform Deduction([(butb_5:

>> that B_1) => ((Deduction([(supposea_6:

>> that A_1) => (butb_5:that B_1)])

>> Mp side1_2):that ??)]))

>>):that (A_1 & ~(B_1)))])

>> :that (~((A_1 -> B_1)) -> (A_1 & ~(B_1))))]

>> {move 0}

define Negimp2 A B : Deduction negimp2

>> Negimp2: [(A_1:prop),(B_1:prop) => (Deduction([(side2_2:

>> that (A_1 & ~(B_1))) => ((~((A_1 ->

>> B_1)) propfixform Deduction([(ifathenb_3:

>> that (A_1 -> B_1)) => (((Simplification1(side2_2)

>> Mp ifathenb_3) Mp Simplification2(side2_2)):

>> that ??)]))

>> :that ~((A_1 -> B_1)))])

>> :that ((A_1 & ~(B_1)) -> ~((A_1 -> B_1))))]

>> {move 0}

116

define Negimp A B : propfixform((~(A -> B))<->A \

& ~B, Andproof(Negimp1 A B, Negimp2 A B))

>> Negimp: [(A_1:prop),(B_1:prop) => (((~((A_1

>> -> B_1)) <-> (A_1 & ~(B_1))) propfixform

>> ((A_1 Negimp1 B_1) Andproof (A_1 Negimp2

>> B_1))):that (~((A_1 -> B_1)) <-> (A_1

>> & ~(B_1))))]

>> {move 0}

We note that the more sophisticated namespace management made pos-
sible by the ability to save environments (moves) has applications relative to
our philosophical motivations. If in world j we have not decided the truth
value of a proposition p, we can in different moves with index j+ 1 postulate
objects of sorts that p and that¬p, and develop further declarations and
definitions in these two contexts, switching back and forth at will betweeen
the two developments. If one of p or ¬p leads to contradiction, we will then
have proved the other (if we are using classical logic) in the original world
j, and we will be able to import any definitions with that premise from the
appropriate world j + 1 down into the original world j. Even more inter-
esting, perhaps, is what happens if the question cannot be decided: we can
continue to develop two different alternative pictures of the world, and any-
thing that we can prove in both, we can import into the original world j
(again, on the assumption that we have implemented classical logic). Our
philosophical view supports classical logic, but it does not support the view
that there is a fact of the matter with respect to (for example) the Continuum
Hypothesis (a statement in set theory which is known to be undecidable);
it suggests that we can explore mathematical universes in which CH holds,
and mathematical universes in which ¬CH holds, and anything which follows
from both hypotheses we can conclude is true in any universe satisfying our
basic assumptions apart from CH, without presuming that we can or even
should decide the question of CH one way or the other. We are not thereby
supposing that there is a God’s-eye view in which every question is resolved,
though in some sense we may be providing support for the coherence of the

117

latter view.

16 Basic declarations for a version of Quine’s

New Foundations

Lestrade execution:

postulate V type

>> V: type {move 0}

open

declare Tt3 type

>> Tt3: type {move 2}

postulate typepred Tt3 prop

>> typepred: [(Tt3_1:type) => (---:prop)]

>> {move 1}

close

declare typepredev1 that typepred V

>> typepredev1: that typepred(V) {move 1}

118

postulate Ambiguity typepredev1 that typepred \

setsof V

>> Ambiguity: [(.typepred_1:[(Tt3_2:type) =>

>> (---:prop)]),

>> (typepredev1_1:that .typepred_1(V)) =>

>> (---:that .typepred_1(setsof(V)))]

>> {move 0}

This is a conjectural formulation of the simple theory of types with
Specker’s axiom scheme of Ambiguity, which is equiconsistent with Quine’s
New Foundations.

We first declare a type V as a primitive notion: this is type 0 in a model
of the simple theory of types.

The idea is that we declare a function Ambiguity which will send evidence
typepredev1 that a predicate typepred of types holds of V to evidence that
the same predicate holds of setsof V, type 1 of the same model.

We would want an inverse operation for Ambiguity as well if we did not
have double negation.

The reason that it appears that this might work is that the primitives
we have given seem to allow formulation of predicates of types only under
very limited circumstances: basically the predicates of types that can be
formulated are limited to assertions that formulas of the usual first order
language of TST hold in the model of TST with V as type 0 (with the
additional point that the universal applicability of our natural number type
for indexing functions on different types may imply that consequences of the
Axiom of Counting hold in our ambiguous type theory). We suspect that
adding equality of types and quantification over types to this theory would
lead to contradiction (and so it is important that quantification over the sort
of type labels is not automatically supported by our framework). We intend
to supply proofs of this point if we are able to postulate them.

Another point worth noting is that the “Axiom” of Infinity is provable
in this system (without any use of Ambiguity) by use of the fact that our
notion of iteration is applicable to any type using the same type of natural
numbers. I’ll supply a proof of this at some point.

119

There is a further issue. The Ambiguity rule as stated would allow a
rewrite rule to be declared with rewrited which would allow a rewrite of
setsof V to V, which is disastrous. There are two approaches: we could
continue to investigate the theory articulated above but with the constraint
that we cannot freely use the rewrite logic, or formulate this a little differently.

Lestrade execution:

declare V1 type

>> V1: type {move 1}

declare V2 type

>> V2: type {move 1}

declare V3 type

>> V3: type {move 1}

postulate << V1 V2 prop

>> <<: [(V1_1:type),(V2_1:type) => (---:prop)]

>> {move 0}

postulate Order1 V1 that V1 << setsof V1

>> Order1: [(V1_1:type) => (---:that (V1_1 <<

120

>> setsof(V1_1)))]

>> {move 0}

declare order1 that V1 << V2

>> order1: that (V1 << V2) {move 1}

declare order2 that V2 << V3

>> order2: that (V2 << V3) {move 1}

postulate Ordertrans order1 order2 that V1 \

<< V3

>> Ordertrans: [(.V1_1:type),(.V2_1:type),(order1_1:

>> that (.V1_1 << .V2_1)),(.V3_1:type),(order2_1:

>> that (.V2_1 << .V3_1)) => (---:that (.V1_1

>> << .V3_1))]

>> {move 0}

postulate maxtype V1 V2 type

>> maxtype: [(V1_1:type),(V2_1:type) => (---:

>> type)]

>> {move 0}

postulate Max1 V1 V2 that V1 << maxtype V1 \

V2

121

>> Max1: [(V1_1:type),(V2_1:type) => (---:that

>> (V1_1 << (V1_1 maxtype V2_1)))]

>> {move 0}

postulate Max2 V1 V2 that V2 << maxtype V1 \

V2

>> Max2: [(V1_1:type),(V2_1:type) => (---:that

>> (V2_1 << (V1_1 maxtype V2_1)))]

>> {move 0}

declare order3 that V1 << V3

>> order3: that (V1 << V3) {move 1}

declare order4 that V2 << V3

>> order4: that (V2 << V3) {move 1}

postulate Max3 order3 order4 that (maxtype \

V1 V2) << V3

>> Max3: [(.V1_1:type),(.V3_1:type),(order3_1:

>> that (.V1_1 << .V3_1)),(.V2_1:type),(order4_1:

>> that (.V2_1 << .V3_1)) => (---:that ((.V1_1

>> maxtype .V2_1) << .V3_1))]

>> {move 0}

122

postulate ambtype typepred type

>> ambtype: [(typepred_1:[(Tt3_2:type) => (---:

>> prop)])

>> => (---:type)]

>> {move 0}

declare evid1 that typepred (ambtype typepred)

>> evid1: that typepred(ambtype(typepred)) {move

>> 1}

declare evid2 that (ambtype typepred) << \

V1

>> evid2: that (ambtype(typepred) << V1) {move

>> 1}

postulate Ambiguity2 evid1 evid2 that typepred \

V1

>> Ambiguity2: [(.typepred_1:[(Tt3_2:type) =>

>> (---:prop)]),

>> (evid1_1:that .typepred_1(ambtype(.typepred_1))),

>> (.V1_1:type),(evid2_1:that (ambtype(.typepred_1)

>> << .V1_1)) => (---:that .typepred_1(.V1_1))]

>> {move 0}

123

The development above is consistent with Lestrade logic with rewriting
and proves existence of types ambiguous for any desired concrete finite set
of properties of types. The idea is that there is a transitive relation on
types under which a type is below its power type and two types always have
a maximum, and for every predicate of types there is an associated type
such that the predicate has the same value on every type above the given
type. Now for any collection of predicates of types (sentences true of those
types) we can go to the maximum of their associated types, and above that
point we have ambiguity for those sentences. We do not incur rewriting
opportunities because we do not assert that any two types satisfy exactly
the same predicates.

17 The third and fourth Peano axioms

For the moment, just an outline. The third Peano axiom can be proved using
the operation A 7→ A∪V in any double power type. Applying this function 0
times to the empty set gives the empty set, and applying this function n+ 1
times for any n will give V , which is provably nonempty in a double power
type, so 0 = n+ 1 is false.

The fourth Peano axiom is best shown by considering the type of natural
numbers and the Frege natural numbers over the power type of the natural
numbers. If numbers 1, . . . , n are distinct, the Frege natural number con-
taining {{1}, . . . , {n}} is the result of iterating the Frege successor operation
n times on the Frege zero in the appropriate type. Now, the Frege natural
number containing {{1}, . . . , {n}, ∅} is a new one, and the result of iterating
the Frege successor operation n+1 times on the Frege zero, which establishes
that n 6= n+ 1. This establishes that Infinity holds in the model of type the-
ory based on the natural numbers, which is enough to show that Axiom 4
holds.

These are going to be tricky arguments with lots of preliminaries under
Lestrade.

In the interpretation of NF, if the size of V is the result of applying the
Frege successor operation n times to the Frege zero, than the same is true
of P(V), and this is readily shown not to be true. The fact that the natural
numbers are type free in this interpretation of NF (being defined in a way
independent of the Frege natural numbers in each high enough type) suggests
that the stratified consequences of the axiom of counting ought to hold.

124

18 A note on polymorphic typing

We provide the standard function type constructor.

Lestrade execution:

declare tau8 type

>> tau8: type {move 1}

declare tau9 type

>> tau9: type {move 1}

open

declare x8 in tau8

>> x8: in tau8 {move 2}

postulate f8 x8 in tau9

>> f8: [(x8_1:in tau8) => (---:in tau9)]

>> {move 1}

close

postulate Arrowtype tau8 tau9 type

125

>> Arrowtype: [(tau8_1:type),(tau9_1:type) =>

>> (---:type)]

>> {move 0}

declare ff8 in Arrowtype tau8 tau9

>> ff8: in (tau8 Arrowtype tau9) {move 1}

declare xx8 in tau8

>> xx8: in tau8 {move 1}

postulate Arrowapp ff8 xx8 in tau9

>> Arrowapp: [(.tau8_1:type),(.tau9_1:type),

>> (ff8_1:in (.tau8_1 Arrowtype .tau9_1)),

>> (xx8_1:in .tau8_1) => (---:in .tau9_1)]

>> {move 0}

postulate Fun f8 in Arrowtype tau8 tau9

>> Fun: [(.tau8_1:type),(.tau9_1:type),(f8_1:

>> [(x8_2:in .tau8_1) => (---:in .tau9_1)])

>> => (---:in (.tau8_1 Arrowtype .tau9_1))]

>> {move 0}

postulate Arrowcomp f8, xx8 that Arrowapp(Fun \

f8,xx8)= f8 xx8

126

>> Arrowcomp: [(.tau8_1:type),(.tau9_1:type),

>> (f8_1:[(x8_2:in .tau8_1) => (---:in .tau9_1)]),

>> (xx8_1:in .tau8_1) => (---:that ((Fun(f8_1)

>> Arrowapp xx8_1) = f8_1(xx8_1)))]

>> {move 0}

The following is a set of tentative Lestrade declarations supporting a
popular brand of polymorphic type. We supply the arrow type above because
any application of this polymorphic type scheme requires some prior type
constructors to work with. This section may be expanded with some actual
constructions to illustrate this.

The declarations here are very bare: for example, no extensionality prin-
ciples are given. The arrow type declarations above are made at move 0
(they may be postulated and used later); the polymorphism constructors are
kept in a sandbox environment, declared at move 1.

8/16/2017 entirely new polymorphism declarations

Lestrade execution:

open

open

declare tau50 type

>> tau50: type {move 3}

postulate taufun50 tau50 type

>> taufun50: [(tau50_1:type) => (---:type)]

>> {move 2}

127

postulate polyfun50 tau50 in taufun50 \

tau50

>> polyfun50: [(tau50_1:type) => (---:

>> in taufun50(tau50_1))]

>> {move 2}

close

postulate Polytype taufun50 type

>> Polytype: [(taufun50_1:[(tau50_2:type)

>> => (---:type)])

>> => (---:type)]

>> {move 1}

postulate Polyfun polyfun50 in Polytype \

taufun50

>> Polyfun: [(.taufun50_1:[(tau50_2:type)

>> => (---:type)]),

>> (polyfun50_1:[(tau50_3:type) => (---:

>> in .taufun50_1(tau50_3))])

>> => (---:in Polytype(.taufun50_1))]

>> {move 1}

declare polyobj50 in Polytype taufun50

>> polyobj50: in Polytype(taufun50) {move

128

>> 2}

declare tau51 type

>> tau51: type {move 2}

postulate Polyapp polyobj50 tau51 : in \

taufun50 tau51

>> Polyapp: [(.taufun50_1:[(tau50_2:type)

>> => (---:type)]),

>> (polyobj50_1:in Polytype(.taufun50_1)),

>> (tau51_1:type) => (---:in .taufun50_1(tau51_1))]

>> {move 1}

postulate Polycomp polyfun50, tau51 that \

((Polyfun polyfun50) Polyapp tau51) = \

polyfun50 tau51

>> Polycomp: [(.taufun50_1:[(tau50_2:type)

>> => (---:type)]),

>> (polyfun50_1:[(tau50_3:type) => (---:

>> in .taufun50_1(tau50_3))]),

>> (tau51_1:type) => (---:that ((Polyfun(polyfun50_1)

>> Polyapp tau51_1) = polyfun50_1(tau51_1)))]

>> {move 1}

open

declare tau50 type

129

>> tau50: type {move 3}

define taufuntest tau50 :tau50 Arrowtype \

tau50

>> taufuntest: [(tau50_1:type) => (---:

>> type)]

>> {move 2}

open

declare x50 in tau50

>> x50: in tau50 {move 4}

define testid x50:x50

>> testid: [(x50_1:in tau50) => (---:

>> in tau50)]

>> {move 3}

close

define polyfuntest tau50 : Fun testid

>> polyfuntest: [(tau50_1:type) => (---:

>> in (tau50_1 Arrowtype tau50_1))]

>> {move 2}

130

close

define Polyfuntest : Polyfun polyfuntest

>> Polyfuntest: [(---:in Polytype([(tau50_3:

>> type) => ((tau50_3 Arrowtype tau50_3):

>> type)]))

>>]

>> {move 1}

define Polyapptest : (Polyfuntest Polyapp \

Nat) Arrowapp 0

>> Polyapptest: [(---:in Nat)]

>> {move 1}

define Polycomptest : Polycomp polyfuntest, \

Nat

>> Polycomptest: [(---:that ((Polyfun([(tau50_5:

>> type) => (Fun([(x50_6:in tau50_5)

>> => (x50_6:in tau50_5)])

>> :in (tau50_5 Arrowtype tau50_5))])

>> Polyapp Nat) = Fun([(x50_7:in Nat)

>> => (x50_7:in Nat)]))

>>)]

>> {move 1}

131

open

declare Y50 in Nat Arrowtype Nat

>> Y50: in (Nat Arrowtype Nat) {move 3}

define noncepred Y50 : ((Polyfuntest \

Polyapp Nat) Arrowapp 0)= Y50 Arrowapp \

0

>> noncepred: [(Y50_1:in (Nat Arrowtype

>> Nat)) => (---:prop)]

>> {move 2}

close

define Polycomptest2: Substitution0 noncepred, \

Polycomptest, Reflexeq((Polyfuntest \

Polyapp Nat) Arrowapp 0)

>> Polycomptest2: [(---:that (((Polyfuntest

>> Polyapp Nat) Arrowapp 0) = (Fun([(x50_9:

>> in Nat) => (x50_9:in Nat)])

>> Arrowapp 0)))]

>> {move 1}

open

declare n50 in Nat

>> n50: in Nat {move 3}

132

define natid n50:n50

>> natid: [(n50_1:in Nat) => (---:in Nat)]

>> {move 2}

close

define Polycomptest3 : Substitution (Arrowcomp \

natid,0,Polycomptest2)

>> Polycomptest3: [(---:that (((Polyfuntest

>> Polyapp Nat) Arrowapp 0) = 0))]

>> {move 1}

close

19 Introduction to Lestrade

This section contains a formal discussion of Lestrade (the framework and the
software), versions of parts of which are already embedded in the discussion
of the development of a particular Lestrade theory which precedes this. The
discussion here is generally more detailed and can be consulted for reference.
Note that the phrase “the current move” is used for move i in this section,
where “the last move” is used above. These usages are equivalent: in terms
of our temporal metaphor, “the present” is right after the last declaration in
move i and right before the first declaration in move i+ 1.

19.1 Introduction

Lestrade is a general purpose logical framework for mathematics. It is moti-
vated by a philosophical premise: contrary to the statements of its founders,

133

practitioners, and detractors (when they say anything about philosophical
matters at all), modern foundational mathematics, with classical logic and
including Cantorian set theory, does not depend on actual infinities. All ac-
tivities in mathematics can be viewed as finitary, or at least as involving no
more than potential infinities, and this does not make classical logic or the
Cantorian transfinite mathematics illegitimate.

Such a claim might be taken to be rather startling. We support it with the
development of a computer implementation of the framework (the Lestrade
Type Inspector) in which one can actually conduct mathematical investi-
gations in the style suggested by the underlying philosophical view. Some
aspects of the formal framework have been strongly shaped by what might
seem accidental consequences of the way we have implemented the software.
Some of these features are not in our opinion accidental. Of course, some
features of the software and of the framework as formally presented are the
results of design choices which could have been made differently: we will
indicate some choices we have made which were not essential.

Lestrade uses the idea that mathematical propositions and their proofs
are among the objects of mathematics. It uses a version of the Curry-Howard
isomorphism, which is usually associated with constructive logic (which can
be implemented in Lestrade) but can, as here, be used to motivate classical
logic. As the mention of the Curry-Howard isomorphism should indicate,
Lestrade is a dependent type system.

The view taken of functions in Lestrade is not the standard one. We do
not view functions as completely given infinite tables of values (this would
quite defeat our basic philosophical premise!); instead, we regard a func-
tion as a machine which will return an output (of a type given in advance,
possibly depending on input values) given a sequence of inputs (later ones
possibly of types depending on earlier ones). When a function is given by an
expression, we can reasonably say that we have finitely described the action
of the function given any inputs that may later be presented to us. We do
not not, however, assume that an arbitrarily given function is determined
by some unknown expression; our language is not regarded as constraining
what functions are possible. Theorems about functions provable by induction
on the structure of the expressions we are able to define so far may suggest
themselves as further axioms, but our framework does not presume that such
principles are true.

Lestrade can be viewed as a version of Automath, though there are con-
siderable differences. Since it is related to Automath, it is also more distantly

134

related to other systems such as Coq with this genealogy.

19.2 Metaphysics of Lestrade

The things we talk about in Lestrade we will refer to as entities when we are
being completely general. The entities fall into two large categories, objects
and functions . Each object or function has a sort (the word type is reserved
for a specific variety of sert, as we will see shortly).

The sorts of object can be reviewed quickly.

1. There is a sort prop intended to be inhabited by mathematical propo-
sitions.

2. For each p of sort prop, there is a sort that p inhabited by evidence
for p. A proof of p is evidence for p, of course, but we do not hold that
evidence for p must be a formal proof as such. If that p is inhabited,
we do take p to be true: there is no probable evidence here.

3. There is a sort obj intended to be inhabited by “untyped mathematical
objects”. In an implementation of ZFC, for example, the sets would
be of sort obj. Note that other sorts would be in use, in spite of the
fact that ZFC is an untyped theory, because its propositions and their
proofs (or evidence) would be objects of other sorts.

4. There is a sort type inhabited by “type labels”. A typical example
would be Nat, the type of natural numbers. We find it useful to call
these objects type labels in order to resist the temptation to view them
as (necessarily usually infinite) collections containing all the objects of
the indicated type, which would tell against our philosophical premise.

5. For each type (label) τ , there is a sort in τ inhabited by the objects of
type τ . A natural number n would have sort in Nat. We say that an
object of sort in τ is of type τ .

And that is all. But it turns out to be quite a lot, once the additional
apparatus of functions is introduced.

The analogy between prop/that and type/in is almost perfect in Lestrade:
the analogy is perfect in the core functions of the Type Inspector and could
be made perfect throughout with a slight modification to the software which

135

we will note later; though the symmetry is likely to be collapsed by postu-
lates in particular theories, where we may not want to treat proofs/evidence
for propositions in the same way as mathematical objects of various types.

A function in Lestrade takes a fixed positive number of arguments. The
sort of a function is determined by the sorts of its arguments and its output,
with the further subtlety that the sort of each argument may depend on the
values of earlier arguments and the sort of the output may depend on the
values of the arguments.

The general notation for a function sort is

(x1, τ1), . . . , (xn, τn)⇒ (−, τ).

The variables xi are bound in this notation, and bound variables in distinct
function sort notations are viewed as distinct. Each τi is the sort of xi, and
may contain xj’s only for j < i. The τi’s may be object or function sorts.
The notation τ stands for the output sort, which must be an object sort and
may contain any of the xi’s.

A user of the Lestrade Type Inspector never writes a function sort no-
tation (or the kind of notation for specific functions presented just below):
Lestrade does present such notations in output. The purpose of presenting
the notation at this point is to explain what sorts of function there are.

A general notation for a function given by an explicit definition y =
f(x1, . . . , xn) is

(x1, τ1), . . . , (xn, τn)⇒ (y, τ),

where of course each xi has type τi and y must have sort τ and

(x1, τ1), . . . , (xn, τn)⇒ (−, τ)

will be its sort (which imposes conditions on the τi’s and τ which are described
above).

That is the complete sort system of Lestrade. The rest is user postulation
of objects and functions of different types, and user development of useful
definitions from the primitive constructions, where “user” may indifferently
mean “user of the Lestrade Type Inspector” or “developer of a mathematical
theory in the Lestrade framework”.

136

19.3 The Lestrade Environment: a metaphor for math-
ematical activity

The Lestrade environment is in concrete terms a finite sequence of finite lists
of declarations of identifiers. Each declaration is a pair whose first component
is an identifier and whose second component is a function sort notation or a
function notation4. This sequence always has at least two lists of declarations
in it, and we refer to its length as i + 2. The jth list will be referred to as
“move j” (because we have a temporal metaphor for what is going on, though
we are certainly not talking about physical time). Move i + 1 is called “the
next move” and move i is called “the current move” (or “the last move”, in
some documents; the idea is that the “present” is right after the end of the
current/last move, and just before all the declarations in the next move).

We should think of each move as a possible world in some modality.
We use a temporal metaphor: the current move and the previous moves
are as it were “past” and the items declared there are constant: the next
move is “future” and the items declared there are variable. The concrete
mathematical actions we carry out should make it clearer what is going on.

All identifiers declared in all the moves are distinct. We think of the
entities represented by those identifiers as having been discovered in the order
of the moves, and within each move in the order in which they are listed. This
is useful for getting dependencies to work correctly without rather laborious
checks.

We introduce the six core commands of Lestrade, the declaration com-
mands declare, postulate, and define, and the environment handling
commands open, close, and clearcurrent.

declare: An instance of the declare command is of the form declare i
τ , where i is a fresh identifier and τ is an expression for an object
sort (which of course may not contain any identifier which has not
been declared previously). The effect of the command is to introduce
a variable i of sort τ , an item in the next move.

postulate: An instance of the postulate command is of the form

postulate f args (:) τ

4The second component of the form [(y, τ)] in the declaration of a defined object can
be thought of as a notation for a constant function to be applied to an empty argument
list, though Lestrade does not explicitly treat it that way.

137

The component f is a fresh identifier.

The component args is an argument list, which may be empty, or
may be of the form x1, . . . , xn, where the xi’s are identifiers previously
declared in the next move, none of which were introduced using the
define command, appearing in the order in which they appear in the
next move. This order restriction automatically enforces dependency
relations on the xi’s.

The component τ must be an expression for an object sort.

All non-defined identifiers declared at the next move on which τ or the
sort τi of each xi depends must be either among the xk’s in args or
should appear in the sort of some xk. Lestrade will insert any non-
defined identifiers found in τ or some τi into its internal representation
of the argument list of f at the latest possible point; when Lestrade
evaluates f at particular lists of arguments, it will attempt to deduce
the values of these implicit arguments [and may fail: this is not a fail-
ure of the type system, but a failure of Lestrade input/output, as it
were, and such failures can always be avoided by re-declaring the func-
tion with more arguments given explicitly]. The details of the implicit
argument scheme are a complication here, but must be mentioned as
the implicit argument scheme is very useful and is used immediately in
examples.

The effect of the command is to enhance the argument list to an argu-
ment list x′1, . . . , x

′
m, appearing in the order in which they are declared

in the next move and with every identifier declared at the next move
and appearing in τ or any of the τi’s (or indeed any of the sorts τ ′i
of x′i’s) appearing as an x′j, and then declare the fresh identifier f as
having sort

(x′1, τ
′
1), . . . , (x

′
m, τ)⇒ (−, τ),

appending this declaration to the current move.

If args is empty, the effect of the command is to declare f of type τ at
the current move rather than the next move: this is a declaration of a
constant.

The colon before the τ is now (we believe) always optional: earlier it
was sometimes required for things to parse correctly.

138

When executed when the next move is move 1, the postulate com-
mand should be thought of as introducing axioms and primitive no-
tions. When used at later moves in combination with the open and
close commands to be discussed below, it is used to introduce func-
tion variables (and for other purposes, as for example to introduce
hypothetical primitives or axioms). The reader should note that the
declare command only allows us to introduce function parameters of
object sorts, but our description of function sorts above allows the pos-
sibility of parameters of function sorts.

define: An instance of the define command is of the form

define f args : y

The component f is a fresh identifier.

The component args is an argument list, which may be empty, or
may be of the form x1, . . . , xn, where the xi’s are identifiers previously
declared in the next move, none of which were introduced using the
define command [we will see here that such declarations have dis-
tinctive features], appearing in the order in which they appear in the
next move. This order restriction automatically enforces dependency
relations on the xi’s.

The component y must be an expression representing an object, whose
sort we denote by τ .

All non-defined identifiers declared at the next move on which y, τ or
the sort τi of each xi depend must be either among the xk’s in args

or should appear in the sort of some xk. Lestrade will insert any non-
defined identifiers found in y, τ , or some τi and not found among the
arguments into its internal representation of the argument list of f at
the latest possible point; when Lestrade evaluates f at particular lists
of arguments, it will attempt to deduce the values of these implicit
arguments [and may fail: implicit argument handling is not a failure of
the type system, but a failure of Lestrade input/output, as it were, and
such failures can always be avoided by re-declaring the function with
more arguments given explicitly]. The details of the implicit argument
scheme are a complication here, but must be mentioned as the implicit
argument inference scheme is very useful and is used immediately in
examples.

139

The effect of the command is to enhance the argument list to an argu-
ment list x′1, . . . , x

′
m, appearing in the order in which they are declared

in the next move and with every identifier declared at the next move
and appearing in y, τ , or any of the τi’s (or indeed any of the sorts τ ′i
of x′i’s) appearing as an x′j, and then declare the fresh identifier f as
having sort

(x′1, τ
′
1), . . . , (x

′
m, τ)⇒ (y, τ),

appending this declaration to the current move.

Of course, f is actually being declared as of sort

(x′1, τ
′
1), . . . , (x

′
m, τ)⇒ (−, τ),

with y serving as an annotation that it is a specific function.

If args is empty, the effect of the command is to declare f of type (y, τ)
[really, as being of type τ with the additional data of its particular
identity as y] at the current move rather than the next move: this is a
declaration of a defined constant.

The colon before the τ is required.

remarks on postulate and define commands: In either the postulate

or define commands, in terms of the metaphor, f is declared as a
presently given object, which, whatever xi’s of type τi may be given
in the future, will return an output of type τ . In the case of the
define command, we are specifically told what object will be returned
in each case (we have a template into which to insert the arguments);
in the case of the postulate command we suppose that the values
will be presented on demand on presentation of appropriately sorted
inputs. In neither case are we obliged to suppose that we know all the
values at once. Even in the case of the define command, executing the
definition with a particular list of arguments may cause us to request as
yet unknown values of primitive functions introduced by the postulate
command (indeed, this will almost certainly be the case).

Part of the commitment is that if we are given x1, . . . , xn, we can de-
duce the implied values of x′1, . . . x

′
m from the sorts of the explicitly

given arguments: it should be noted that this can fail at run-time as it
were, as we may see in examples. The implicit argument inference fea-
ture is actually a feature of the input/output of Lestrade: as far as the

140

sort checker (which is the heart of Lestrade) is concerned, all functions
have all of their required arguments. A problem with implicit argu-
ment inference can always be solved by using a version of the offending
function with all arguments given explicitly.

remarks on the environment commands: The commands open, close,
and clearcurrent manipulate the environment. Only their core be-
havior is described here. There is a system for saving and restoring
moves, and in this context some of these commands may appear with
names of saved moves as arguments: these uses are not described here.

open: The open command adds a new empty list of declarations to the end
of the environment. This has the effect of incrementing the parameter
i and changing the identities of the current move and the next move:
the old next move becomes the new current move, and the new empty
move is the new next move.

close, clearcurrent: The close command can only be executed if i > 0. It
simply deletes the next move. The environment is shortened by one, the
old current move becomes the next move and the old move i−1 becomes
the current move (again; it must have been at some time before). The
clearcurrent command is a variant of close: it replaces the next
move with an empty list (clearing all variable declarations, as it were)
but leaves the length of the environment unchanged. The command
clearcurrent is required as an independent command because close

cannot be used to clear declarations in move 1.

function variables: Now we can explain how to generate function parame-
ters. To introduce a function parameter f , execute the open command,
introduce parameters for f of the desired types, then use the postulate
command to declare f , followed by the close command, which leaves
us with f of the desired type declared at the next move. If a function
parameter itself requires parameters of function sorts, this may require
repeated use of open and close, but it can be done.

variable expressions: Defined identifiers declared at the next move are
as it were complex variable expressions. When they are used in the
expression y in a define command, they must be expanded out: where
defined constants appear, they are expanded in the obvious way; where

141

defined functions appear in applied position, their application is carried
out; where defined functions appear as arguments they are replaced
with their function notation with bound variables given above: this
must be done because a declaration at the current move cannot depend
on a defined identifier at the next move, whose declaration disappears
when the close command is executed. The variable parameters of a
postulate command are, as we will see, replaced by bound variables
[differentiated by applying a fresh numerical index to each variable,
preserving the condition on Lestrade expressions that identical bound
variables are always associated with the same instance of that variable
as a binder] and their types are supplied as part of the information in
the function sort reported for the constructed identifier: in any case, no
declaration in a particular move can depend on a declaration appearing
in a later move or later in the same move. Defined identifiers declared
in the current move or previous moves do not need to be expanded out.

19.3.1 Namespace management refined: saving and retrieving en-
vironments

With the limited environment handling given above, there is no way to re-
move or revise declarations of variables and variable expressions in move 1
other than clearing all of them. After a while, it is quite hard to remem-
ber what sorts have been assigned to parameters and variable expressions,
and for that matter what order they appear in (recalling that parameters in
postulate and define commands must appear in order of declaration). We
have already noted that the clearcurrent command will clear all declara-
tions at the next move.

More intelligent namespace management is supported by the full specifi-
cation of the open, clearcurrent, and save commands.

Each move is assigned a name. The default name is its numeral index (the
j such that it is move j). The command save envname will save the next
move with the name envname, associated with the list of names of preceding
moves at the time it is saved (a saved move is actually identified by the
sequence of names of all moves at the time it is saved, and this is how it is
identified internally; this means that moves saved in different contexts can
quite safely be tagged with the same name). The command open envname

will open an already existing move (of the right index, wth the same preceding
moves) with the name envname or if there is no such move, or create a new

142

blank move with that name. The command clearcurrent envname will
clear the net move and replace it with a move named envname if there is
such a move with the appropriate preceding names of moves associated with
it or replace it with a blank move of that name otherwise. A move cannot
be saved or opened with its default numeral name: the reason for this is
that we do not want the parameterless open or clearcurrent command to
unexpectedly invoke declarations from a saved environment. Further, when
an environment is named using the open, clearcurrent, or save command,
none of the preceding moves associated with it, other than move 0, may have
its default numeral name.

Any identifiers in a saved environment which conflict with identifiers de-
clared in earlier moves since it was saved have ’ or $ appended to them,
depending on whether they are alphanumeric or special character identifiers.
Identifiers ending in these characters cannot be declared by the user.

This means that instead of having a linear sequence of moves, which we
can think of as times or possible worlds, we have a tree structure. Each node
in the tree of moves has a name; different nodes may actually have the same
name, since the identity of a node is determined by the sequence of names
of the nodes on the branch leading to it (including its own name), not the
name attached to it by itself. Every such sequence of nodes contains move
0 in the first position: for any n > 1, if a move with the name ‘n’ appears
in position n + 1 of the sequence then the entire sequence is labelled with
successive numerals. The shorthand way of putting this is that no move
may be saved with its default numeral name (even as part of the sequence
of previous moves saved along with a move explicitly saved) with its default
numeral name, except move 0.

19.4 Lestrade Notation

In this section we describe the notation which the user can enter for objects,
functions, and object sorts.

An identifier is a string of characters of positive length which consists of
zero or one upper case letters followed by zero or more lower case characters
followed by zero or more numerals, or consists of zero or one special characters
taken from a list

~!@#$%^&*-+=/<>|?

143

An object notation is either an identifier declared of object type or an ob-
ject notation enclosed in parentheses or a notation f(t1, . . . , tn) or t1 f t2, . . . , tn
(synonymous) [in the mixfix notation t1 must be enclosed in parentheses if it
is a function identifier and n > 1 is required] where f is declared as a func-
tion identifier of appropriate type, or a variant of the latter two notations
obtained by dropping some of the parentheses and commas. The rule is that
the parser will read as long an expression as possible before performing any
sort checking. Thus, commas (or close parentheses, or colons) must appear
after function identifiers used as arguments to keep them from being applied
to following terms, and preceded with commas [or sometimes other punctu-
ation] to keep them from absorbing previous terms as an infix. The parser
will read a parenthesis following a non-infix function identifier as starting an
argument list, so if it is desired to enclose a first argument in parentheses, it
is also necessary to enclose the entire argument list. It should be remembered
that in effect all operations have the same precedence and group to the right
as in the ancient language APL. Problems with user input can always be
avoided by putting in more parentheses and commas. Lestrade output will
show as many parentheses and commas as possible, and will use infix nota-
tion for operators of arity 2 which have first arguments which are objects.
Lestrade output will never use mixfix notation with more than one argument
after the function symbol.

Lestrade user function notations are either identifiers declared as func-
tions or or function notations enclosed in parentheses or notations f(t1, . . . , tm)
where m is less than the number of arguments which f requires: such a term
represents the function

(xm+1, . . . , xn)⇒ f(t1, . . . , tm, xm+1, . . . , xn).

Such a term can appear only as an argument (not in applied or infix position),
and the parentheses around the argument list are required.

Lestrade user object sort notations are then prop, that p where p is
an expression for an object of sort prop, obj, type, or in τ where τ is an
expression for an object of sort type.

In a Lestrade declaration line (with any of the first three commands)
the identifier is always the second component of the command: declarations
always present the declared identifier in prefix notation. The arguments may
be separated with commas as required, and the argument list (which is never
enclosed in parentheses) may be terminated with a colon : if required. This

144

is mandatory in a define command and we believe now always optional (but
allowed) in a postulate command. A colon will never appear in a declare

command, which does not contain an argument list.

19.5 Lestrade Sort Checking and Definition Expansion

An identifier will have a sort determined by lookup in the environment.
We use the notation T [t/x] for the result of replacing the variable x with

the term t in the term T . Of course a formal definition of substitution in
the presence of variable binding constructions requires care (and is not given
here).

A function application term f(t1, . . . , tn) or t1 f t2, . . . , tn, for simplicity
supposed supplied with all needed arguments (we suppose that the implicit
argument inference algorithm has already been carried out), where f has
type

((x1, τ1), . . . , (xn, τn)⇒ (−, τ)

will sort check if t1 is of type τ1 and if either n = 1 (in which case its sort is
τ [t1/x1]) or if n > 1 and if we introduce f ′, a new function symbol of type

(x2, τ2[t1/x1]), . . . , (xn, τn[t1/x1])⇒ (−, τ [t1/x1])

and f ′(t2, . . . , tn) is well-typed [in this case, we return the sort of f ′(t2, . . . , tn)
as the sort of the original expression].

Where f is defined as

((x1, τ1), . . . , (xn, τn)⇒ (y, τ)

we evaluate f(t1, . . . , tn) very similarly. If n = 1 we return y[t1, x1]. If n > 1,
we define a new function symbol f ′ for

(x2, τ2[t1/x1]), . . . , (xn, τn[t1/x1])⇒ (y[t1, x1], τ [t1/x1])

and return f ′(t2, . . . , tn).
Expansion of definitions is employed in two different contexts. Whenever

an identifier passes out of scope (when a defined identifier in the next move
is used in the definition of an entity introduced at the current move), this
identifier will be expanded. If it is a defined object, the identifier is replaced
with its definition. If it is a defined function applied to arguments, the ap-
propriate values of the arguments are substituted into its definition. If it is a

145

function appearing as an argument, it is replaced by the anonymous notation
for that function used in its declaration (something similar happens if a func-
tion with a truncated argument list appears as an argument). The second use
of definitional expansion is in matching (determining when two expressions
are the same): the matching facility will check by carrying out definitional
expansions behind the scenes to determine whether two expressions being
compared have the same meaning. This use of definitional expansion does
not lead to the expansion of defined terms in Lestrade output.

146

